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Goal of this Talk

• Present a brief overview of MLIR as a framework for quantum 
compiler frontends

• Detail how we added a compiler pass into Catalyst MLIR 
quantum compiler frontend (and convince you that you can, 
too!)

• Elaborate on the importance and opportunities created by 
working at the IR level
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Why work at the intersection of compilers and quantum 
computing, anyway? 

• Intermediate representation mirrors ISA 
relationship between classical HW & SW

– SW lowers to an IR and HW implements IR

• Leverage domain specific compilation 
applicable to all quantum programs

– Lower all input languages to common IR 
then perform quantum-flavored 
optimizations

• Reason about optimizations at the level 
of quantum algorithm instead of 
quantum gates

– Large semantic gap between quantum 
algorithm and gates closed by IR inserted 
in between
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Quick MLIR Overview

• A framework that provides the capability of authoring domain-
specific intermediate representations

– This allows us to reason about quantum at a higher abstraction level –
MLIR Dialects – instead of quantum gates – e.g., QIR, QASM 

• Relies on “progressive lowering”

– Starting from a level of abstraction closer to a given domain and then 
lowering that representation into lower and lower levels of abstraction 
until we get to LLVM IR
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Pennylane and Catalyst

• Two repositories of interest

– PennyLane is the Quantum 
Python frontend from Xanadu

– Catalyst is the JIT compiler built
on MLIR that takes circuits defined
in PennyLane

https://github.com/PennyLaneAI/pennylane
https://github.com/PennyLaneAI/catalyst
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The Problem: 
Reduction of Observables in Hamiltonian

• Basing it off this PennyLane blog post that demonstrates Qubit-
wise commutativity (QWC) as simple method of reducing 
measurements.

Want to reduce number of terms

https://pennylane.ai/qml/demos/tutorial_measurement_optimize/
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The Problem: 
Reduction of Observables in Hamiltonian

• Basing it off this PennyLane blog post that demonstrates Qubit-
wise commutativity (QWC) as simple method of reducing 
measurements.

• While PennyLane has Python libraries that can group 
observables via QWC, we would like embed this analysis into 
the compiler

• Intuition:
– We want to solve an optimization problem using an iterative approach

– Each iteration becomes more expensive as molecules get bigger

– We want to make iterations cheaper by doing less work (i.e., compute)

Want to reduce number of terms

https://pennylane.ai/qml/demos/tutorial_measurement_optimize/
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What We Actually Did

• Before we proceeded, we wanted to make sure that the 
PennyLane/Catalyst flow didn’t already do this

– Ask me offline about my VSCode setup to walk through the PennyLane 
libraries and Catalyst C++ components!

• What we found was that the flow almost handles QWC 
correctly, but does not fully account for QWC

– If number of commuting groups > 1, are all rotated into the correct 
shared eigenbasis, but the named measurement bases have not been 
changed to reflect the standard basis

– If there’s only one group in the set of observables, the measurement 
bases aren’t correct and the correct rotations to the measurement 
basis are not inserted 
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Should be observations in the Z-basis…



1111

What We Actually Did

• Before we proceeded, we wanted to make sure that the 
PennyLane/Catalyst flow didn’t already do this

• What we found was that the flow almost handles QWC 
correctly, but does not fully account for QWC

– If number of commuting groups > 1, are all rotated into the correct 
shared eigenbasis, but the named measurement bases have not been 
changed to reflect the standard basis

– If there’s only one group in the set of observables, the measurement 
bases aren’t correct and the correct rotations to the measurement 
basis are not inserted 

• To address this, we introduce a compiler pass to detect these 
patterns and close the loop



Determining how to 
proceed from prior pull 
requests

• To be fair, there is some documentation 
on writing the pattern matching and 
rewrites, but I want to show what files 
actually need to be modified/created

https://docs.pennylane.ai/projects/catalyst/en/stable/dev/transforms.html
https://docs.pennylane.ai/projects/catalyst/en/stable/dev/transforms.html
https://docs.pennylane.ai/projects/catalyst/en/stable/dev/transforms.html
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Check for Relevant Documentation
Look at Commit History

This file was added as 
part of a PR to add a 
new MLIR dialect and 
compiler pass. Maybe 
we can look at the PR 
to get a sense of what 
files we need to 
modify/create.



1414



1515

What Files to Touch?

Create the pass:
• PauliToZ.cpp

• PauliToZPatterns.cpp

Make Pass visible:
• RegisterAllPasses.cpp

Add source files for building
• mlir/lib/Quantum/Transforms/CMakeLists.txt

Add pass boilerplate for tablegen:
• Passes.h

• Passes.td

• Patterns.h



Adding the Pass
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Writing the Pass (Core Logic)
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Writing the Pass (Core Logic)
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Writing the Pass (Core Logic)
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Writing the Pass (Core Logic)
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Writing the Pass (Core Logic)
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Catalyst Files Changed/Created
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Before and After Example
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Before and After Example
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Results on Synthetic and Real Molecules
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Conclusion

• Intermediate representations lower the semantic gap between 
application and quantum backend target instructions

• Working at the intermediate representation level allows you to 
embed quantum domain knowledge into a compiler, allowing 
for quantum circuits from multiple inputs to be lowered to a 
common IR and then operated on by the same compiler 
passes

• It’s not as daunting as it seems!

• Future Work

– Make tree out of tree pass

– More quantum domain compiler passes!

Thanks!

cabreraam@ornl.gov
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Backups
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Step-through Python Execution
Useful VSCode Settings

• For Jupyter Notebook step-through

– In settings.json: “jupyter.debugJustMyCode": false

• In a launch.json config for Python
– { 

 ..., 

 "configurations": [ 

  { 

   "name": "Python: Current File", 

   "type": "python", 

   "request": "launch", 

   "program": "${file}", 

   "console": "integratedTerminal", 

   "justMyCode": false 

  } 

 ] 

}
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Step through Python Execution
Demo
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Before and After
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Check for Relevant Documentation
Catalyst Compiler Passes

https://docs.pennylane.ai/projects/catalyst/en/stable/dev/transforms.html
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Check for Relevant Documentation
Catalyst Compiler Passes

https://docs.pennylane.ai/projects/catalyst/en/stable/dev/transforms.html
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