
ORNL is managed by UT-Battelle LLC for the US Department of Energy

Integrating an MLIR Pass into the Catalyst
MLIR Compiler to Close the Loop for
Qubit-Wise Commutativity

Anthony Cabrera*, Sharmin Afrose, Daniel Claudino, Travis Humble
*Research Scientist @ ORNL, cabreraam@ornl.gov

Quantum Software 2.0 Workshop
IEEE Quantum Week
September 19, 2024

22

Goal of this Talk

• Present a brief overview of MLIR as a framework for quantum
compiler frontends

• Detail how we added a compiler pass into Catalyst MLIR
quantum compiler frontend (and convince you that you can,
too!)

• Elaborate on the importance and opportunities created by
working at the IR level

33

Why work at the intersection of compilers and quantum
computing, anyway?

• Intermediate representation mirrors ISA
relationship between classical HW & SW

– SW lowers to an IR and HW implements IR

• Leverage domain specific compilation
applicable to all quantum programs

– Lower all input languages to common IR
then perform quantum-flavored
optimizations

• Reason about optimizations at the level
of quantum algorithm instead of
quantum gates

– Large semantic gap between quantum
algorithm and gates closed by IR inserted
in between

44

Quick MLIR Overview

• A framework that provides the capability of authoring domain-
specific intermediate representations

– This allows us to reason about quantum at a higher abstraction level –
MLIR Dialects – instead of quantum gates – e.g., QIR, QASM

• Relies on “progressive lowering”

– Starting from a level of abstraction closer to a given domain and then
lowering that representation into lower and lower levels of abstraction
until we get to LLVM IR

55

Pennylane and Catalyst

• Two repositories of interest

– PennyLane is the Quantum
Python frontend from Xanadu

– Catalyst is the JIT compiler built
on MLIR that takes circuits defined
in PennyLane

https://github.com/PennyLaneAI/pennylane
https://github.com/PennyLaneAI/catalyst

66

The Problem:
Reduction of Observables in Hamiltonian

• Basing it off this PennyLane blog post that demonstrates Qubit-
wise commutativity (QWC) as simple method of reducing
measurements.

Want to reduce number of terms

https://pennylane.ai/qml/demos/tutorial_measurement_optimize/

77

The Problem:
Reduction of Observables in Hamiltonian

• Basing it off this PennyLane blog post that demonstrates Qubit-
wise commutativity (QWC) as simple method of reducing
measurements.

• While PennyLane has Python libraries that can group
observables via QWC, we would like embed this analysis into
the compiler

Want to reduce number of terms

https://pennylane.ai/qml/demos/tutorial_measurement_optimize/

88

The Problem:
Reduction of Observables in Hamiltonian

• Basing it off this PennyLane blog post that demonstrates Qubit-
wise commutativity (QWC) as simple method of reducing
measurements.

• While PennyLane has Python libraries that can group
observables via QWC, we would like embed this analysis into
the compiler

• Intuition:
– We want to solve an optimization problem using an iterative approach

– Each iteration becomes more expensive as molecules get bigger

– We want to make iterations cheaper by doing less work (i.e., compute)

Want to reduce number of terms

https://pennylane.ai/qml/demos/tutorial_measurement_optimize/

99

What We Actually Did

• Before we proceeded, we wanted to make sure that the
PennyLane/Catalyst flow didn’t already do this

– Ask me offline about my VSCode setup to walk through the PennyLane
libraries and Catalyst C++ components!

• What we found was that the flow almost handles QWC
correctly, but does not fully account for QWC

– If number of commuting groups > 1, are all rotated into the correct
shared eigenbasis, but the named measurement bases have not been
changed to reflect the standard basis

– If there’s only one group in the set of observables, the measurement
bases aren’t correct and the correct rotations to the measurement
basis are not inserted

1010

Should be observations in the Z-basis…

1111

What We Actually Did

• Before we proceeded, we wanted to make sure that the
PennyLane/Catalyst flow didn’t already do this

• What we found was that the flow almost handles QWC
correctly, but does not fully account for QWC

– If number of commuting groups > 1, are all rotated into the correct
shared eigenbasis, but the named measurement bases have not been
changed to reflect the standard basis

– If there’s only one group in the set of observables, the measurement
bases aren’t correct and the correct rotations to the measurement
basis are not inserted

• To address this, we introduce a compiler pass to detect these
patterns and close the loop

Determining how to
proceed from prior pull
requests

• To be fair, there is some documentation
on writing the pattern matching and
rewrites, but I want to show what files
actually need to be modified/created

https://docs.pennylane.ai/projects/catalyst/en/stable/dev/transforms.html
https://docs.pennylane.ai/projects/catalyst/en/stable/dev/transforms.html
https://docs.pennylane.ai/projects/catalyst/en/stable/dev/transforms.html

1313

Check for Relevant Documentation
Look at Commit History

This file was added as
part of a PR to add a
new MLIR dialect and
compiler pass. Maybe
we can look at the PR
to get a sense of what
files we need to
modify/create.

1414

1515

What Files to Touch?

Create the pass:
• PauliToZ.cpp

• PauliToZPatterns.cpp

Make Pass visible:
• RegisterAllPasses.cpp

Add source files for building
• mlir/lib/Quantum/Transforms/CMakeLists.txt

Add pass boilerplate for tablegen:
• Passes.h

• Passes.td

• Patterns.h

Adding the Pass

1717

Writing the Pass (Core Logic)

1818

Writing the Pass (Core Logic)

1919

Writing the Pass (Core Logic)

2020

Writing the Pass (Core Logic)

2121

Writing the Pass (Core Logic)

2323

Catalyst Files Changed/Created

2424

Before and After Example

2525

Before and After Example

2626

Results on Synthetic and Real Molecules

2727

Conclusion

• Intermediate representations lower the semantic gap between
application and quantum backend target instructions

• Working at the intermediate representation level allows you to
embed quantum domain knowledge into a compiler, allowing
for quantum circuits from multiple inputs to be lowered to a
common IR and then operated on by the same compiler
passes

• It’s not as daunting as it seems!

• Future Work

– Make tree out of tree pass

– More quantum domain compiler passes!

Thanks!

cabreraam@ornl.gov

2828

Backups

2929

Step-through Python Execution
Useful VSCode Settings

• For Jupyter Notebook step-through

– In settings.json: “jupyter.debugJustMyCode": false

• In a launch.json config for Python
– {

 ...,

 "configurations": [

 {

 "name": "Python: Current File",

 "type": "python",

 "request": "launch",

 "program": "${file}",

 "console": "integratedTerminal",

 "justMyCode": false

 }

]

}

3030

Step through Python Execution
Demo

3131

Before and After

3232

Check for Relevant Documentation
Catalyst Compiler Passes

https://docs.pennylane.ai/projects/catalyst/en/stable/dev/transforms.html

3333

Check for Relevant Documentation
Catalyst Compiler Passes

https://docs.pennylane.ai/projects/catalyst/en/stable/dev/transforms.html

	Slide 1: Integrating an MLIR Pass into the Catalyst MLIR Compiler to Close the Loop for Qubit-Wise Commutativity
	Slide 2: Goal of this Talk
	Slide 3: Why work at the intersection of compilers and quantum computing, anyway?
	Slide 4: Quick MLIR Overview
	Slide 5: Pennylane and Catalyst
	Slide 6: The Problem: Reduction of Observables in Hamiltonian
	Slide 7: The Problem: Reduction of Observables in Hamiltonian
	Slide 8: The Problem: Reduction of Observables in Hamiltonian
	Slide 9: What We Actually Did
	Slide 10: Should be observations in the Z-basis…
	Slide 11: What We Actually Did
	Slide 12: Determining how to proceed from prior pull requests
	Slide 13: Check for Relevant Documentation Look at Commit History
	Slide 14
	Slide 15: What Files to Touch?
	Slide 16: Adding the Pass
	Slide 17: Writing the Pass (Core Logic)
	Slide 18: Writing the Pass (Core Logic)
	Slide 19: Writing the Pass (Core Logic)
	Slide 20: Writing the Pass (Core Logic)
	Slide 21: Writing the Pass (Core Logic)
	Slide 23: Catalyst Files Changed/Created
	Slide 24: Before and After Example
	Slide 25: Before and After Example
	Slide 26: Results on Synthetic and Real Molecules
	Slide 27: Conclusion
	Slide 28: Backups
	Slide 29: Step-through Python Execution Useful VSCode Settings
	Slide 30: Step through Python Execution Demo
	Slide 31: Before and After
	Slide 32: Check for Relevant Documentation Catalyst Compiler Passes
	Slide 33: Check for Relevant Documentation Catalyst Compiler Passes

