*,OAK RIDGE

‘National Labora

ExHET’22

ORNL
April 2, 2022

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

* Both authors contributed equally to this research.

%OAK RIDGE
" Nati tory

Introduction

Challenges with Heterogeneous Computing:

<Easy to use programming modela <Leverage different compute units>

CShare data between accelerators> <Fine—grained, high—performance>

Current heterogeneous system use host memory as an intermediary

How could CXL be used to addess these challenges?

%S)AK RIDGE
ati

onal Laboratory 2/20

Overview

CXL Overview

Analyze Existing Methods with Baseline Application
CXL Performance Model

Application Model

Discussion

%OAK RIDGE
National Laboratory 3/20

CXL

Compute
¢ CXL = Compute Express Link E (L?r:f(ss

® Unveiled in March 2019
® Open industry standard processor interconnect

® Unified, coherent memory space between the CPU and any memory attached CXL
device.

® High-bandwidth, low-latency connection between host and devices including
accelerators, memory expansion, and smart I/O devices.

e Utilizes PCI Express 5.0 physical layer infrastructure and the PCle alternate protocol.

® Designed to meet demanding needs of HPC work in Al, ML, communication systems

through enablement of coherency and memory semantics across heterogeneous
processing and memory systems.

%OAK RIDGE

National Laboratory 4/20

CXL

e CXL is a non-symmetric protocol.

® The CXL transaction layer is comprised of three dynamically multiplexed sub-protocols
on a single link:

— CXL.io: Provides discovery, configuration, register access, interrupts, DMA, etc.
— CXL.cache: Provides devices access to unified memory space.

— CXL.memory: Allows devices to provide memory to the unified memory space.

Caching Devices / Accelerators Memory Buffers

Accelerators with Memory
Accelerator E Accelerator
NIC Memory

Cace | Bl [[cace]

ﬁCXL ﬁCXL ﬁCXL

EH EH EH

‘:g}» Processor ‘:g}» Processor ‘:g}» Processor
CXL.io CXL.cache CXL.io CXL.mem CXL.io CXL.cache CXL.mem

Figure 1: CXL device classes and sub-protocols [3].
Qs Rivcr
ational Laboratory

5/20

CXL

e CXL is a non-symmetric prot . .
® The CXL transaction layer is For this work the focus is on
on a single link: accelerators with memory

— CXL.io: Provides discover using host bias.
— CXL.cache: Provides devic

lexed sub-protocols

, DMA, etc.

— CXL.memory: Allows devices to provide memory to the unified fjpemory space.

Caching Devices / Accelerators Memory Buffers Accelerators with Memory

Accelerator l Accelerator
NIC Memory

Cace | Bl [[cace]

ﬁCXL ﬁCXL ﬁCXL

Processor Processor Processor

CXL.io CXL.cache CXL.io

CXL.mem

CXL.io CXL.cache CXL.mem

Figure 1: CXL device classes and sub-protocols [3].
%OAK RIDGE

‘National Laboratory

5/20

Baseline Application: DecEval

® Decompress Evaluate (DecEval) is a generic dataflow problem.

® We created DecEval as an example collaborative accelerator application.
® Application flow:

— Decompress double precision data that inflates to 1.6 GB
— Perform numerical integration to estimate 7 using the following formula:

N

4.0
Z 2A:13z7r
= 1+ 23

® We map the decompression step to an FPGA, and the numerical integration on the GPU

| - ﬁ»w

Compressed U250 Uncompressed Uncompressed
Data Values Values
%OAK RIDGE
National Laboratory

6/20

Baseline Implementation

Why This Application?

o This flavor of application highlights the benefit of extremely heterogeneous systems
GPUs are adept at compute-intensive, floating-point computation

— FPGAs can be leveraged to exploit sequential, pipeline-able applications

We want to leverage the strengths of different accelerators to accelerate applications with
diverse workloads

‘We use this application as a case study to show how CXL can further enhance extremely
heterogeneous systems by enabling tighter integration between compute and memory
components

® Explicit memory transfers between accelerators using the host memory.
® FPGA implemented using gzip from Xilinx Vitis Libraries (OpenCL 2.0 API).
® GPU implementation from Bristol HPC group [2] (OpenMP 4.0).

%OAK RIDGE

National Laboratory 7120

Test Platform

Component ‘

Model

Additonal Information

CPU

Intel Xeon Gold 6130

VM configured with 24 vCPUs
92 GB RAM
PCle Passthrough

FPGA

Xilinx Alveo U250

Ultrascale+ p-arch

64 GB off-chip DDR4 RAM

PCle Gen 3x16

Xilinx HLS Vitis Library + OpenCL Host

GPU

NVidia P100

Pascal p-arch

16 GB oft-chip HBM2

PCle Gen 3x16

CUDA through OpenMP 4.0

%QAK RIDGE
€ Nati

ional Laboraory

Table 1: Experimental System Specification

8/20

CXL Performance Model

® Based on high-level CXL performance expectations.
® [ntegrates PCle model from Neugebauer et al. [1]
e Uses PCle 3.0 with x16 lanes.

PCle Transfer Time CXL Transfer Time

tpcie = e + ¢ tegt = "
pcze—bn S cxl—b

t
n - cxl_penalty s

ts = 738.77 ns (extracted from [1]). ts = 40 ns (CXL 1.1 Technical Training Videos [3]).
cxl_penalty = 60-90% of PCle

® },, calculated from PCle model [1].

%S)AK RIDGE
€ Nati

onal Laboratory 9/20

CXL Performance Model

—— PCle
2.5 CXL Crossover at 12.7 KiB
2.0 A \
@
2 1.5
(]
g
&=
1.0 A
0.5 1
0.0 1
0 2500 5000 7500 10000 12500 15000 17500 20000
Datasize Transfered (Bytes)
%OAK RIDGE Figure 2: Single transfer time for various data sizes.
National Laboratory

10/20

%OAK RIDGE

CXL Performance Model

® Converges to czl_penalty value.
® At 1 cache line (64B) speed up of 14.0-18.7x.

—— Relative transfer time of CXL to PCle

1.01

Relative Transfer Time
o
(=)

0 2500 5000 7500 10000 12500 15000 17500 20000
Datasize (Bytes)

Figure 3: Relative transfer time of CXL and PCle.

National Laboratory

11/20

Baseline Compared to Model

30 Write 8 MiB and Read 16 MiB

Type
Il Write 8 MiB
2.32 Wmm Read 16 MiB

2.51

Time (ms)

Measured PCle CXL Worst CXL Best

Figure 4: Comparison of actual data transfer time for DecEval and the times predicted by the model.

12/20

Effect of Varied Communication Block Sizes

1.44 —— PCle
— CXL

Time (sec)
o - I
[e2] o N
L N

e
o

o
K
L

e
o

0.0

0 2500 5000 7500 10000 12500 15000 17500 20000
Chunk size (Bytes)

Figure 5: CXL Model: Total Transfer time for the entire application when transferring data in various
chunk sizes.

13/20

Application Flows

Baseline Application

A) [H2F] F |F2H[H2G] 6 |G2H]
Direct Accelerator Communication

B) (H2F] F |F26] 6 |G2H)
CXL with Coherent Cache

C) | F [& |
Pipelined CXL Application

F
) —E]

%OAK RIDGE
€ National Laboratory

14/20

Pipelined Application Model

tapp =d- tstage + (’I’L - 1) : tstage +s

To T1 T2 T3 T4 T5

Task 1 | Startup | Send Kernel | Receive

Task 2 Send Kernel | Receive
Task 3 Send Kernel | Receive
Task 4 Send Kernel | Receive
— A N _
—~— —
d N tstage (Tl - 1) N tstage

Figure 6: Diagram of the balanced pipeline application execution modeled by the simple application
model. In this diagram d = 3 and n = 4.

15/20

Application Flow Results

Pipeline limited by FPGA Kernel

TO T1 T2 T3 T4 T5
Task 1 Startup | Send Kernel | Receive
FPGA decompression pipeline: Task 2 Sond | Kernel | Receive
FPGA Kernel = 70.9 ms Task 3 Send | Kernel | Receive
Reads =1.87 ms Task 4 Send | Kernel | Receive
Writes =1.37 ms ~— —— —— —— —

FPGA vs GPU Kernel execution:

FPGA Kernel = 7.70 sec (21 x slower than GPU Kernel) D) l F l
GPU Kernel =0.36 sec l G l
Total =10.58 sec

%S)AK RIDGE
ati

onal Laboratory

16/20

Application Flow Results

CXL with Coherent Cache
0 | F [& |

T,
CXL Application Speedup = T _t:t;f = 1.31x
GPU FPGA

Pipelined CXL Application
| E |
D
' T)

tapp =d- tstage + (n —].) . tstage +s5=145x%

%OAK RIDGE
National Laboratory 17/20

CXL-Enabled Programming Model

CXL.io device registers CXL.cache
® Setup accelerators. ® Access to unified memory
® Control execution of kernel.

® Specify data locations.

Unified CXL Memory

%OAK RIDGE
National Laboratory 18/20

Conclusion

® 14.0-18.7x speed-up for small data transfers.
e CXL outperforms PCle for transfers less than 12.7-76.5 KiB

® CXL to avoid data transfers through host memory

— 1.31x speedup with CXL Cache transfers.
— 1.45x speedup with CXL Pipeline.

® Heterogeneous programming can be easier with a unified cache-coherent memory

model.
%,0AK RIDGE
National Laboratory 19/20

Conclusion

14.0-18.7x speed-up for small data transfers.
CXL outperforms PCle for transfers less than 12.7-76.5 KiB

CXL to avoid data transfers through host memory

— 1.31x speedup with CXL Cache transfers.
— 1.45x% speedup with CXL Pipeline.

® Heterogeneous programming can be easier with a unified cache-coherent memory
model.
%OAK RIDGE
¥ National Laboratory 19/20

% 0AK RIDGE

’ National Laboratory

ExHET 22

ORNL
April 2, 2022

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

* Both authors contributed equally to this research.

%OAK RIDGE
" Nati tory

CXL's Protocol Asymmetry

, CXL Model - Asymmetric Protocol
CCl Model - Symmetric CC Protocol " Accelerator | | CPU

" Accelerato CPU

CXL/CCI Caching Agent
Biased

Coherence

CClI Caching Agent
ccl

Bypass

CXL/CCl Home Agent

" -CCI - Cache Coherent Interconnect

- CXL key advantages: e
+ Avoid protocol interoperability hurdles/roadblocks
+ Enable devices across multiple segments (e.g. client / server)
+ Enable Memory buffer with no coherency bu%bn
+ Simpler, processor independent device development

Compute K.
' \Express .
Link

From: Compute Express Link™ (CXL™): A Coherent Interface for Ultra-High-Speed Transfers [August 2019 - Presentation

CXL's Coherence Bias

Device Bias

Accelerator CPU + 10
Um‘dched
- e
/,’;b

Critical access class
for accelerators is
“device engine to
device memory”

Compute
' \Express
Link

“Coherence Bias” allows

Accelerator]

Biased

Coherence
Bypass

a device engine to
access its memory
coherently without

visiting the processor

Two driver managed
modes or “Biases”

HOST BIAS: pages being used by the host
or shared between host and device

DEVICE BIAS: pages being used exclusively
by the device

Coherency Guaranteed

Host Bias

CPU + 10

Coherence
CA+HA

Accelerator

Both biases guaranteed
correct/coherent
Guarantee applies even when software bugs

or speculative accesses unexpectedly access
device memory in the “Device Bias” state.

A ~
S
o

From: Compute Express Link™ (CXL™): A Coherent Interface for Ultra-High-Speed Transfers [August 2019 - Presentation

Minimum application speedup for acceleration

t—t' >2d

where ¢ is the time the task takes to run on the current device, ¢’ is the time the task takes to
run on a different device, and d is the time to move the data required to perform the task.

04K RIDGE
i

onal Laboratory

3/0

Bibliography I

[1] Neugebauer et al. “Understanding PCle performance for end host networking”. In: Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication. ACM, 2018, pp. 327-341. DOI:
https://doi.org/10.1145/3230543.3230560.

[2] University of Bristol HPC Group. Programming Your GPU with OpenMP.
https://github.com/UoB-HPC/openmp—-tutorial.2020.

[3] Compute Express Link Consortium. CXL 1.1 Technical Training Videos. Aug. 16, 2021. URL:
https://www.computeexpresslink.org/cxl-regulated-videos.

%OAK RIDGE

National Laboratory

4/0

https://doi.org/https://doi.org/10.1145/3230543.3230560
https://github.com/UoB-HPC/openmp-tutorial
https://www.computeexpresslink.org/cxl-regulated-videos

	CXL Overview
	Analyze Existing Methods with Baseline Application
	CXL Performance Model
	Application Model
	Discussion
	Appendix

