
VSCode Configuration and Tips for
Flang Development
Anthony Cabrera
Research Scientist
Oak Ridge National Laboratory
January 4, 2023



Preliminaries
‚ You can find my slides at

https://cabreraam.github.io/files/presentations/2023_01_05-hcbb_vscode_mlir_presentation.pdf
‚ You can find my configuration files at

https://github.com/cabreraam/flang_vscode_pres_supplement
‚ If you have any suggestions, feedback, or errata, please email me at
cabreraam AT ornl DOT gov

2 / 24

https://cabreraam.github.io/files/presentations/2023_01_05-hcbb_vscode_mlir_presentation.pdf
https://github.com/cabreraam/flang_vscode_pres_supplement


Overview

VSCode Configuration

Stepping Through Code

Case Study

3 / 24



Current Topic

VSCode Configuration
VSCode Extensions
Configuration Files

Stepping Through Code

Case Study

4 / 24



Current Topic

VSCode Configuration
VSCode Extensions
Configuration Files

Stepping Through Code

Case Study

5 / 24



Extensions to Download
‚ C/C++
‚ CMake Tools

6 / 24



Current Topic

VSCode Configuration
VSCode Extensions
Configuration Files

CMakePresets.json and CMakeUserPresets.json
settings.json
launch.json
tasks.json

Stepping Through Code

Case Study

7 / 24



CMakePresets.json and CMakeUserPresets.json

These files allow you to create multiple configurations for the configure, generate, and build steps of
any CMake project.

‚ Place these files in the llvm directory
‚ CMakePresets.json are for common configurations, and CMakeUserPresets.json

are on a per-user basis
– Specifically, in the Flang project, the CMakePresets.json config can contain the default build

configuration from the Flang README.md, and the CMakeUserPresets.json can contain your
personal system-specific details for building on your machine

Use these config files over cmake-kits.json and cmake-variants.json
The presets files are cross-plaform; you can share your CMakePresets.json and
CMakeUserPresets.json files with someone who does not use VSCode as their IDE, since the
presets files are a ‘CMake‘ feature and not a VSCode feature. Also, this is now the recommended
method from Microsoft developers.

8 / 24

https://github.com/llvm/llvm-project/tree/main/flang##building-flang-in-tree
https://github.com/llvm/llvm-project/tree/main/flang##building-flang-in-tree
https://devblogs.microsoft.com/cppblog/cmake-presets-integration-in-visual-studio-and-visual-studio-code/##cmake-presets-in-the-cmake-tools-extension-for-visual-studio-code
https://devblogs.microsoft.com/cppblog/cmake-presets-integration-in-visual-studio-and-visual-studio-code/##cmake-presets-in-the-cmake-tools-extension-for-visual-studio-code


CMakePresets.json and CMakeUserPresets.json

These files allow you to create multiple configurations for the configure, generate, and build steps of
any CMake project.

‚ Place these files in the llvm directory

‚ CMakePresets.json are for common configurations, and CMakeUserPresets.json
are on a per-user basis

– Specifically, in the Flang project, the CMakePresets.json config can contain the default build
configuration from the Flang README.md, and the CMakeUserPresets.json can contain your
personal system-specific details for building on your machine

Use these config files over cmake-kits.json and cmake-variants.json
The presets files are cross-plaform; you can share your CMakePresets.json and
CMakeUserPresets.json files with someone who does not use VSCode as their IDE, since the
presets files are a ‘CMake‘ feature and not a VSCode feature. Also, this is now the recommended
method from Microsoft developers.

8 / 24

https://github.com/llvm/llvm-project/tree/main/flang##building-flang-in-tree
https://github.com/llvm/llvm-project/tree/main/flang##building-flang-in-tree
https://devblogs.microsoft.com/cppblog/cmake-presets-integration-in-visual-studio-and-visual-studio-code/##cmake-presets-in-the-cmake-tools-extension-for-visual-studio-code
https://devblogs.microsoft.com/cppblog/cmake-presets-integration-in-visual-studio-and-visual-studio-code/##cmake-presets-in-the-cmake-tools-extension-for-visual-studio-code


CMakePresets.json and CMakeUserPresets.json

These files allow you to create multiple configurations for the configure, generate, and build steps of
any CMake project.

‚ Place these files in the llvm directory
‚ CMakePresets.json are for common configurations, and CMakeUserPresets.json

are on a per-user basis

– Specifically, in the Flang project, the CMakePresets.json config can contain the default build
configuration from the Flang README.md, and the CMakeUserPresets.json can contain your
personal system-specific details for building on your machine

Use these config files over cmake-kits.json and cmake-variants.json
The presets files are cross-plaform; you can share your CMakePresets.json and
CMakeUserPresets.json files with someone who does not use VSCode as their IDE, since the
presets files are a ‘CMake‘ feature and not a VSCode feature. Also, this is now the recommended
method from Microsoft developers.

8 / 24

https://github.com/llvm/llvm-project/tree/main/flang##building-flang-in-tree
https://github.com/llvm/llvm-project/tree/main/flang##building-flang-in-tree
https://devblogs.microsoft.com/cppblog/cmake-presets-integration-in-visual-studio-and-visual-studio-code/##cmake-presets-in-the-cmake-tools-extension-for-visual-studio-code
https://devblogs.microsoft.com/cppblog/cmake-presets-integration-in-visual-studio-and-visual-studio-code/##cmake-presets-in-the-cmake-tools-extension-for-visual-studio-code


CMakePresets.json and CMakeUserPresets.json

These files allow you to create multiple configurations for the configure, generate, and build steps of
any CMake project.

‚ Place these files in the llvm directory
‚ CMakePresets.json are for common configurations, and CMakeUserPresets.json

are on a per-user basis
– Specifically, in the Flang project, the CMakePresets.json config can contain the default build

configuration from the Flang README.md, and the CMakeUserPresets.json can contain your
personal system-specific details for building on your machine

Use these config files over cmake-kits.json and cmake-variants.json
The presets files are cross-plaform; you can share your CMakePresets.json and
CMakeUserPresets.json files with someone who does not use VSCode as their IDE, since the
presets files are a ‘CMake‘ feature and not a VSCode feature. Also, this is now the recommended
method from Microsoft developers.

8 / 24

https://github.com/llvm/llvm-project/tree/main/flang##building-flang-in-tree
https://github.com/llvm/llvm-project/tree/main/flang##building-flang-in-tree
https://devblogs.microsoft.com/cppblog/cmake-presets-integration-in-visual-studio-and-visual-studio-code/##cmake-presets-in-the-cmake-tools-extension-for-visual-studio-code
https://devblogs.microsoft.com/cppblog/cmake-presets-integration-in-visual-studio-and-visual-studio-code/##cmake-presets-in-the-cmake-tools-extension-for-visual-studio-code


CMakePresets.json and CMakeUserPresets.json

These files allow you to create multiple configurations for the configure, generate, and build steps of
any CMake project.

‚ Place these files in the llvm directory
‚ CMakePresets.json are for common configurations, and CMakeUserPresets.json

are on a per-user basis
– Specifically, in the Flang project, the CMakePresets.json config can contain the default build

configuration from the Flang README.md, and the CMakeUserPresets.json can contain your
personal system-specific details for building on your machine

Use these config files over cmake-kits.json and cmake-variants.json
The presets files are cross-plaform; you can share your CMakePresets.json and
CMakeUserPresets.json files with someone who does not use VSCode as their IDE, since the
presets files are a ‘CMake‘ feature and not a VSCode feature. Also, this is now the recommended
method from Microsoft developers.

8 / 24

https://github.com/llvm/llvm-project/tree/main/flang##building-flang-in-tree
https://github.com/llvm/llvm-project/tree/main/flang##building-flang-in-tree
https://devblogs.microsoft.com/cppblog/cmake-presets-integration-in-visual-studio-and-visual-studio-code/##cmake-presets-in-the-cmake-tools-extension-for-visual-studio-code
https://devblogs.microsoft.com/cppblog/cmake-presets-integration-in-visual-studio-and-visual-studio-code/##cmake-presets-in-the-cmake-tools-extension-for-visual-studio-code


CMakePresets.json Example

9 / 24



CMakeUserPresets.json Example

10 / 24



settings.json

This config file configures your project in the current VSCode workspace.

‚ Place this file in the .vscode directory
‚ Specifically in LLVM and Flang, we need to associate .inc files c++ files
‚ You can’t step through auto-generated .inc files unless you make this association
‚ Example settings.json file:

11 / 24



settings.json

This config file configures your project in the current VSCode workspace.

‚ Place this file in the .vscode directory

‚ Specifically in LLVM and Flang, we need to associate .inc files c++ files
‚ You can’t step through auto-generated .inc files unless you make this association
‚ Example settings.json file:

11 / 24



settings.json

This config file configures your project in the current VSCode workspace.

‚ Place this file in the .vscode directory
‚ Specifically in LLVM and Flang, we need to associate .inc files c++ files

‚ You can’t step through auto-generated .inc files unless you make this association
‚ Example settings.json file:

11 / 24



settings.json

This config file configures your project in the current VSCode workspace.

‚ Place this file in the .vscode directory
‚ Specifically in LLVM and Flang, we need to associate .inc files c++ files
‚ You can’t step through auto-generated .inc files unless you make this association

‚ Example settings.json file:

11 / 24



settings.json

This config file configures your project in the current VSCode workspace.

‚ Place this file in the .vscode directory
‚ Specifically in LLVM and Flang, we need to associate .inc files c++ files
‚ You can’t step through auto-generated .inc files unless you make this association
‚ Example settings.json file:

11 / 24



launch.json

A launch.json file is used to configure the debugger in VSCode

‚ This is useful for quickly selecting between debugging tasks

12 / 24

https://code.visualstudio.com/docs/editor/debugging


launch.json

A launch.json file is used to configure the debugger in VSCode

‚ This is useful for quickly selecting between debugging tasks

12 / 24

https://code.visualstudio.com/docs/editor/debugging


launch.json example

13 / 24



tasks.json

This config file allows you to create tasks with external tools, e.g., through shell commands, that are
easily navigatable and can be executed within the VSCode environment

‚ For example, this is helpful for quickly compiling a given test to check if LLVMFlang behaved as
expected or not

14 / 24



tasks.json

This config file allows you to create tasks with external tools, e.g., through shell commands, that are
easily navigatable and can be executed within the VSCode environment

‚ For example, this is helpful for quickly compiling a given test to check if LLVMFlang behaved as
expected or not

14 / 24



15 / 24



16 / 24



Current Topic

VSCode Configuration

Stepping Through Code

Case Study

17 / 24



Using GDB to Step Through Code

Though it’s somewhat slow to step through LLVM using a debugger, the tradeoff is that you can
interactively see what the code is doing. This is particularly useful when you’re still learning the
codebase (like me!)

‚ You can examine the state of all variables
‚ You can jump through all currently active call stacks
‚ You can easily see where certain routines/variables are defined

18 / 24



Using GDB to Step Through Code

Though it’s somewhat slow to step through LLVM using a debugger, the tradeoff is that you can
interactively see what the code is doing. This is particularly useful when you’re still learning the
codebase (like me!)

‚ You can examine the state of all variables
‚ You can jump through all currently active call stacks
‚ You can easily see where certain routines/variables are defined

18 / 24



19 / 24



Current Topic

VSCode Configuration

Stepping Through Code

Case Study
llvm-project issue 58973

20 / 24



Current Topic

VSCode Configuration

Stepping Through Code

Case Study
llvm-project issue 58973

21 / 24



llvm-project issue 58973
‚ Here is an issue that is raising an error when a warning is more appropriate

– A little more specifically, an attribute of a dummy argument does not correspond to the actual
argument being passed

‚ Besides knowing that I want to step through the code using gdb, I have no idea where to start, so
I of course ask the Flang community for help

‚ After a tip, I find that flang/lib/Semantics/check-call.cpp might be where the fix
should be applied

‚ Before going further, I start configuring VSCode + CMake
– I set up CMakeUserPresets.json with the default Flang configuration, and set up
CMakeUserUserPresets.json with details specific to my system as well as setting the
RelWithDebInfo build option

22 / 24

https://github.com/llvm/llvm-project/issues/58973


llvm-project issue 58973 (cont.)
‚ I visually scan the flang/lib/Semantics/check-call.cpp and start setting

breakpoints in places where I think might be useful
‚ I start implementing what I think the fix should be
‚ Once I have something I think works, it’s time to build LLVM using the CMake extension

integrated into our VSCode environment
‚ At this point, I can start editing the launch.json and tasks.json config files

– The commands in launch.json and tasks.json will essentially be the same except
launch.json contains config information for the debugger, and the tasks.json file will
configure shell command that allows for a quick check for whether we see what we expect or not

‚ Once I’m happy with what I have so far, I start soliciting reviews on Phabricator
‚ After an iterative process, the fix was deemed acceptable but contingent on writing some tests in

the flang/test directory

23 / 24

https://reviews.llvm.org/D139134


VSCode Configuration and Tips for
Flang Development
Anthony Cabrera
Research Scientist
Oak Ridge National Laboratory
January 4, 2023


	VSCode Configuration
	VSCode Extensions
	Configuration Files

	Stepping Through Code
	Case Study
	llvm-project issue ##58973


