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Preliminaries
‚ You can find my slides at

https://cabreraam.github.io/files/presentations/2023_01_05-hcbb_vscode_mlir_presentation.pdf
‚ You can find my configuration files at

https://github.com/cabreraam/flang_vscode_pres_supplement
‚ If you have any suggestions, feedback, or errata, please email me at
cabreraam AT ornl DOT gov
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Extensions to Download
‚ C/C++
‚ CMake Tools
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CMakePresets.json and CMakeUserPresets.json

These files allow you to create multiple configurations for the configure, generate, and build steps of
any CMake project.

‚ Place these files in the llvm directory
‚ CMakePresets.json are for common configurations, and CMakeUserPresets.json

are on a per-user basis
– Specifically, in the Flang project, the CMakePresets.json config can contain the default build

configuration from the Flang README.md, and the CMakeUserPresets.json can contain your
personal system-specific details for building on your machine

Use these config files over cmake-kits.json and cmake-variants.json
The presets files are cross-plaform; you can share your CMakePresets.json and
CMakeUserPresets.json files with someone who does not use VSCode as their IDE, since the
presets files are a ‘CMake‘ feature and not a VSCode feature. Also, this is now the recommended
method from Microsoft developers.
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CMakePresets.json Example
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CMakeUserPresets.json Example
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settings.json

This config file configures your project in the current VSCode workspace.

‚ Place this file in the .vscode directory
‚ Specifically in LLVM and Flang, we need to associate .inc files c++ files
‚ You can’t step through auto-generated .inc files unless you make this association
‚ Example settings.json file:

11 / 24



settings.json

This config file configures your project in the current VSCode workspace.

‚ Place this file in the .vscode directory

‚ Specifically in LLVM and Flang, we need to associate .inc files c++ files
‚ You can’t step through auto-generated .inc files unless you make this association
‚ Example settings.json file:

11 / 24



settings.json

This config file configures your project in the current VSCode workspace.

‚ Place this file in the .vscode directory
‚ Specifically in LLVM and Flang, we need to associate .inc files c++ files

‚ You can’t step through auto-generated .inc files unless you make this association
‚ Example settings.json file:

11 / 24



settings.json

This config file configures your project in the current VSCode workspace.

‚ Place this file in the .vscode directory
‚ Specifically in LLVM and Flang, we need to associate .inc files c++ files
‚ You can’t step through auto-generated .inc files unless you make this association

‚ Example settings.json file:

11 / 24



settings.json

This config file configures your project in the current VSCode workspace.

‚ Place this file in the .vscode directory
‚ Specifically in LLVM and Flang, we need to associate .inc files c++ files
‚ You can’t step through auto-generated .inc files unless you make this association
‚ Example settings.json file:

11 / 24



launch.json

A launch.json file is used to configure the debugger in VSCode

‚ This is useful for quickly selecting between debugging tasks
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launch.json example
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tasks.json

This config file allows you to create tasks with external tools, e.g., through shell commands, that are
easily navigatable and can be executed within the VSCode environment

‚ For example, this is helpful for quickly compiling a given test to check if LLVMFlang behaved as
expected or not
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Using GDB to Step Through Code

Though it’s somewhat slow to step through LLVM using a debugger, the tradeoff is that you can
interactively see what the code is doing. This is particularly useful when you’re still learning the
codebase (like me!)

‚ You can examine the state of all variables
‚ You can jump through all currently active call stacks
‚ You can easily see where certain routines/variables are defined
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llvm-project issue 58973
‚ Here is an issue that is raising an error when a warning is more appropriate

– A little more specifically, an attribute of a dummy argument does not correspond to the actual
argument being passed

‚ Besides knowing that I want to step through the code using gdb, I have no idea where to start, so
I of course ask the Flang community for help

‚ After a tip, I find that flang/lib/Semantics/check-call.cpp might be where the fix
should be applied

‚ Before going further, I start configuring VSCode + CMake
– I set up CMakeUserPresets.json with the default Flang configuration, and set up
CMakeUserUserPresets.json with details specific to my system as well as setting the
RelWithDebInfo build option
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llvm-project issue 58973 (cont.)
‚ I visually scan the flang/lib/Semantics/check-call.cpp and start setting

breakpoints in places where I think might be useful
‚ I start implementing what I think the fix should be
‚ Once I have something I think works, it’s time to build LLVM using the CMake extension

integrated into our VSCode environment
‚ At this point, I can start editing the launch.json and tasks.json config files

– The commands in launch.json and tasks.json will essentially be the same except
launch.json contains config information for the debugger, and the tasks.json file will
configure shell command that allows for a quick check for whether we see what we expect or not

‚ Once I’m happy with what I have so far, I start soliciting reviews on Phabricator
‚ After an iterative process, the fix was deemed acceptable but contingent on writing some tests in

the flang/test directory
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