
FlightLLM: Efficient Large Language Model
Inference with a Complete Mapping Flow on

FPGAs

--A brief review

Howard Hua

Table of contents

1. Research Background

2. Literature review

3. Computing Architecture

4. Software Design

5. Evaluation

6. Future Perspective

Table of contents

1. Research Background

2. Literature review

3. Computing Architecture

4. Software Design

5. Evaluation

6. Future Perspective

Background: LLM

GPT3 ~660TOPS

[1] OpenAI. (n.d.). OpenAI. Retrieved from https://openai.com/
[2] Kaggle. (n.d.). Competitions. Retrieved from https://www.kaggle.com/competitions
[3] Meta AI. (2024). LLaMA 3: Advancements in Large Language Models. Retrieved from
https://ai.meta.com/blog/meta-llama-3-1/

https://openai.com/
https://www.kaggle.com/competitions
https://ai.meta.com/blog/meta-llama-3-1/

Background: principle of LLM

• Prefill phase or processing the input

• Decode phase or generating the output

The distribution of values before and after
one possible method of quantization [4]

A sparse matrix represented in a compressed format
[4]

Table of contents

1. Research Background

2. Literature review

3. Computing Architecture

4. Software Design

5. Evaluation

6. Future Perspective

Literature Review

In order to implement LLM on
FPGAs…

 1. Heavy computation
 2. Heavy memory access

 3. Dynamic input length

Three challenges of LLM inference on FPGAs, and
the corresponding solutions in FlightLLM [5]

Table of contents

1. Research Background

2. Literature review

3. Computing Architecture

4. Software Design

5. Evaluation

6. Future Perspective

Computing Architecture: Matrix
Processor

(a) The unified Matrix Processing Engine (MPE)
(b) matrix-matrix multiplication (MM) mode
(c) matrix-vector multiplication (MV) mode
(d) Vector Processing Unit (VPU) [5]

Computing Architecture: Matrix
Processor

By configuring the VPU, the MPE can
support both (a) dense and (b) sparse
cases [5]

Computing Architecture: Always
on-chip decode

(a) miscellaneous (MISC) fusion with
attention or linear operation. And an
example of always on-chip decode
approach in the (b) decode and (c)
prefill stage [5]

Table of contents

1. Research Background

2. Literature review

3. Computing Architecture

4. Software Design

5. Evaluation

6. Future Perspective

Software Design: Reduce
Instruction memory
• Instruction files: Designed to adapt tokens of different size

• Imagine this is a 64 by 64 sparse matrix:

An illustrative demo of 64 by 64 matrix [4]

Table of contents

1. Research Background

2. Literature review

3. Computing Architecture

4. Software Design

5. Evaluation

6. Future Perspective

Evaluation: latency and throughput

Hardware utilization of FlightLLM on Alveo U280 [5]

Memory bandwidth utilization of FlightLLM across
devices [5]

Hardware used during evaluation of FlightLLM [5]

Evaluation: bandwidth and speed

Latency and throughput of FlightLLM and V100S/A100 GPU. The horizontal axis represents [prefill size,
decode size] [5]

Top: Performance of FlightLLM, DFX, CTA, and FACT. The horizontal axis represents [prefill size, decode size]
Bottom: Energy efficiency of FlightLLM, NVIDIA V100S/A100 GPU. The horizontal axis represents [prefill size, decode

size] [5]

Overall,

• This paper proposes FlightLLM, a novel implementation of recent LLM
models on FPGAS that achieves:

• 6.0× higher energy efficiency (against Nvidia V100)

• 1.8× better cost efficiency (against Nvidia V100)

• 1.2× higher throughput (against Nvidia A100)

Note: Xilinx Alveo U280 FPGA is used to obtain the first two datapoints, while the Xilinx
Versal VHK158 FPGA is used for the final comparison against Nvidia A100.

Table of contents

1. Research Background

2. Literature review

3. Computing Architecture

4. Software Design

5. Evaluation

6. Future Perspective

Future Prospective

• Raw implementation not open source, but demo available on GitHub

• Emerging open source LLM models since 2023

• Further optimization on LLM inference

References

[1] OpenAI. (n.d.). OpenAI. Retrieved from https://openai.com/

[2] Kaggle. (n.d.). Competitions. Retrieved from https://www.kaggle.com/competitions

[3] Meta AI. (2024). LLaMA 3: Advancements in Large Language Models. Retrieved from
https://ai.meta.com/blog/meta-llama-3-1/

[4] NVIDIA Technical Blog. (2024, January). Mastering LLM Techniques: Inference Optimization.
Retrieved from https://developer.nvidia.com/blog/mastering-llm-techniques-inference-
optimization/

[5] Zeng, S., Liu, J., Dai, G., Yang, X., Fu, T., Wang, H., Ma, W., Sun, H., Li, S., Huang, Z., et al.
(2024). FlightLLM: Efficient large language model inference with a complete mapping flow on FPGAs.
In Proceedings of the 2024 ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (pp. 223–234).

https://openai.com/
https://www.kaggle.com/competitions
https://ai.meta.com/blog/meta-llama-3-1/
https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization/
https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization/

Thank you for listening!

Q&A

	Slide 1: FlightLLM: Efficient Large Language Model Inference with a Complete Mapping Flow on FPGAs --A brief review
	Slide 2: Table of contents
	Slide 3: Table of contents
	Slide 4: Background: LLM
	Slide 5: Background: principle of LLM
	Slide 6: Table of contents
	Slide 7: Literature Review
	Slide 8: Table of contents
	Slide 9: Computing Architecture: Matrix Processor
	Slide 10: Computing Architecture: Matrix Processor
	Slide 11: Computing Architecture: Always on-chip decode
	Slide 12: Table of contents
	Slide 13: Software Design: Reduce Instruction memory
	Slide 14: Table of contents
	Slide 15: Evaluation: latency and throughput
	Slide 16: Evaluation: bandwidth and speed
	Slide 17
	Slide 18: Overall,
	Slide 19: Table of contents
	Slide 20: Future Prospective
	Slide 21: References
	Slide 22
	Slide 23

