

FlightLLM: Efficient Large Language Model Inference with a Complete Mapping Flow on FPGAs

--A brief review

Howard Hua

- 1. Research Background
- 2. Literature review
- 3. Computing Architecture
- 4. Software Design
- 5. Evaluation
- 6. Future Perspective

- 1. Research Background
- 2. Literature review
- 3. Computing Architecture
- 4. Software Design
- 5. Evaluation
- 6. Future Perspective

Background: LLM

GPT3 ~660TOPS

LLaMA by Meta

Com	petitions	Your Work
Q LLM	1	
Results		Total Teams 👻 🎛
1	LLM - Detect AI Generated Text Identify which essay was written by a large language model Featured · Code Competition · 4358 Teams · 9 months ago	\$110,000
A₿ Ø₽	Kaggle - LLM Science Exam Use LLMs to answer difficult science questions Featured · Code Competition · 2664 Teams · A year ago	\$50,000
	LLM Prompt Recovery Recover the prompt used to transform a given text Featured · Code Competition · 2175 Teams · 6 months ago	\$200,000
	LLM 20 Questions Guess the secret word in this cooperative game of question asking and answering Featured · Simulation Competition · 832 Teams · 2 months ago	\$50,000
	LLM Merging Competition NeurIPS 2024 LLM Merging Competition https://Ilm-merging.github.io/ Community · 150 Teams · 9 days ago	Kudos

[1] OpenAI. (n.d.). OpenAI. Retrieved from https://openai.com/

[2] Kaggle. (n.d.). *Competitions*. Retrieved from https://www.kaggle.com/competitions
[3] Meta AI. (2024). *LLaMA 3: Advancements in Large Language Models*. Retrieved from https://ai.meta.com/competitions

Background: principle of LLM

- Prefill phase or processing the input
- Decode phase or generating the output

The distribution of values before and after one possible method of quantization [4]

A sparse matrix represented in a compressed format [4]

- 1. Research Background
- 2. Literature review
- Computing Architecture
 Software Design
- 5. Evaluation
- 6. Future Perspective

Literature Review

In order to implement LLM on FPGAs...

Heavy computation
 Heavy memory access
 Dynamic input length

Three challenges of LLM inference on FPGAs, and the corresponding solutions in FlightLLM [5]

Research Background
 Literature review
 Computing Architecture
 Software Design
 Evaluation
 Future Perspective

Computing Architecture: Matrix Processor

- (a) The unified Matrix Processing Engine (MPE)
- (b) matrix-matrix multiplication (MM) mode
- (c) matrix-vector multiplication (MV) mode
- (d) Vector Processing Unit (VPU) [5]

Computing Architecture: Matrix Processor

By configuring the VPU, the MPE can support both (a) dense and (b) sparse cases [5]

Computing Architecture: Always on-chip decode

(a) miscellaneous (MISC) fusion with attention or linear operation. And an example of always on-chip decode approach in the (b) decode and (c) prefill stage [5]

Research Background
 Literature review
 Computing Architecture
 Software Design
 Evaluation
 Future Perspective

Software Design: Reduce Instruction memory

- Instruction files: Designed to adapt tokens of different size
- Imagine this is a 64 by 64 sparse matrix:

An illustrative demo of 64 by 64 matrix [4]

- Research Background
 Literature review
 Computing Architecture
 Software Design
 Evaluation
- 6. Future Perspective

Evaluation: latency and throughput

Hardware used during evaluation of FlightLLM [5]

	GPU	GPU	FPGA	FPGA
Platform	NVIDIA V100S(12nm)	NVIDIA A100(7nm)	Xilinx Alveo U280(16nm)	Xilinx Versal VHK158(7nm)
Frequency	1245 MHz	1065 MHz	225 MHz	225 MHz
Computing Units	640 Tensor Cores	432 Tensor Cores	9024 DSPs	7392 DSPs
Memory	32 GB	80 GB	8 & 32 GB	32 & 32 GB
Bandwidth	1134 GB/s	1935 GB/s	460 & 38 GB/s	819 & 51 GB/s

Hardware utilization of FlightLLM on Alveo U280 [5]

Component	LUT	FF	BRAM	URAM	DSP
Buffer	42k(3.2%)	75k(2.9%)	816(40.5%)	792(82.5%)	0
Controller	162k(12.4%)	156k(6.0%)	408(20.2%)	0	0
МРЕ	190k(14.6%)	360k(13.8%)	0	0	6144(68.1%)
SFU	30k(2.3%)	36k(1.4%)	24(1.2%)	0	201(2.1%)
Interconnect	150k(11.5%)	316k(12.1%)	4(0.2%)	0	0
Total	574k(44.0%)	943k(36.2%)	1252(62.1%)	792(82.5%)	6345(70.2%)

Memory bandwidth utilization of FlightLLM across devices [5]

Platform	V1005	V100S GPU		A100 GPU		U280 VHK158	
Solution	None	Opt.	None	Opt.	Ours	Ours	
BW Util.	42.5%	65.5%	28.6%	57.4%	65.9%	64.8%	

Evaluation: bandwidth and speed

Latency and throughput of FlightLLM and V100S/A100 GPU. The horizontal axis represents [prefill size, decode size] [5]

Top: Performance of FlightLLM, DFX, CTA, and FACT. The horizontal axis represents [prefill size, decode size] Bottom: Energy efficiency of FlightLLM, NVIDIA V100S/A100 GPU. The horizontal axis represents [prefill size, decode size] [5]

Overall,

- This paper proposes FlightLLM, a novel implementation of recent LLM models on FPGAS that achieves:
 - 6.0× higher energy efficiency (against Nvidia V100)
 - 1.8× better cost efficiency (against Nvidia V100)
 - 1.2× higher throughput (against Nvidia A100)

Note: Xilinx Alveo U280 FPGA is used to obtain the first two datapoints, while the Xilinx Versal VHK158 FPGA is used for the final comparison against Nvidia A100.

- Research Background
 Literature review
 Computing Architecture
 Software Design
 Evaluation
- 6. Future Perspective

Future Prospective

- Raw implementation not open source, but demo available on GitHub
- Emerging open source LLM models since 2023
- Further optimization on LLM inference

References

[1] OpenAI. (n.d.). *OpenAI*. Retrieved from <u>https://openai.com/</u>

[2] Kaggle. (n.d.). *Competitions*. Retrieved from <u>https://www.kaggle.com/competitions</u>

[3] Meta AI. (2024). *LLaMA 3: Advancements in Large Language Models*. Retrieved from <u>https://ai.meta.com/blog/meta-llama-3-1/</u>

[4] NVIDIA Technical Blog. (2024, January). Mastering LLM Techniques: Inference Optimization. Retrieved from <u>https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization/</u>

[5] Zeng, S., Liu, J., Dai, G., Yang, X., Fu, T., Wang, H., Ma, W., Sun, H., Li, S., Huang, Z., et al. (2024). FlightLLM: Efficient large language model inference with a complete mapping flow on FPGAs. In *Proceedings of the 2024 ACM/SIGDA International Symposium on Field Programmable Gate Arrays* (pp. 223–234).

Thank you for listening!

Q&A

