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Background: LLM
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Background: principle of LLM

• Prefill phase or processing the input

• Decode phase or generating the output

The distribution of values before and after 
one possible method of quantization [4]

A sparse matrix represented in a compressed format 
[4]
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Literature Review

In order to implement LLM on 
FPGAs…

 1. Heavy computation
 2. Heavy memory access

 3. Dynamic input length

Three challenges of LLM inference on FPGAs, and
the corresponding solutions in FlightLLM [5]
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Computing Architecture: Matrix 
Processor

(a) The unified Matrix Processing Engine (MPE) 
(b) matrix-matrix multiplication (MM) mode
(c) matrix-vector multiplication (MV) mode
(d) Vector Processing Unit (VPU) [5]



Computing Architecture: Matrix 
Processor

By configuring the VPU, the MPE can 
support both (a) dense and (b) sparse 
cases [5]



Computing Architecture: Always 
on-chip decode

(a) miscellaneous (MISC) fusion with 
attention or linear operation. And an 
example of always on-chip decode 
approach in the (b) decode and (c) 
prefill stage [5]
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Software Design: Reduce 
Instruction memory
• Instruction files: Designed to adapt tokens of different size

• Imagine this is a 64 by 64 sparse matrix: 

An illustrative demo of 64 by 64 matrix [4]
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Evaluation: latency and throughput

Hardware utilization of FlightLLM on Alveo U280 [5]

Memory bandwidth utilization of FlightLLM across 
devices [5]

Hardware used during evaluation of FlightLLM [5]



Evaluation: bandwidth and speed

Latency and throughput of FlightLLM and V100S/A100 GPU. The horizontal axis represents [prefill size, 
decode size] [5]



Top: Performance of FlightLLM, DFX, CTA, and FACT. The horizontal axis represents [prefill size, decode size] 
Bottom: Energy efficiency of FlightLLM, NVIDIA V100S/A100 GPU. The horizontal axis represents [prefill size, decode 

size] [5]



Overall,

• This paper proposes FlightLLM, a novel implementation of recent LLM 
models on FPGAS that achieves:

• 6.0× higher energy efficiency (against Nvidia V100)

• 1.8× better cost efficiency (against Nvidia V100)

• 1.2× higher throughput (against Nvidia A100)

Note: Xilinx Alveo U280 FPGA is used to obtain the first two datapoints, while the Xilinx 
Versal VHK158 FPGA is used for the final comparison against Nvidia A100.



Table of contents

1. Research Background

2. Literature review

3. Computing Architecture

4. Software Design

5. Evaluation

6. Future Perspective



Future Prospective

• Raw implementation not open source, but demo available on GitHub

• Emerging open source LLM models since 2023

• Further optimization on LLM inference
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Thank you for listening!



Q&A
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