SuperNIC: An FPGA-Based, Cloud Oriented SmartNIC

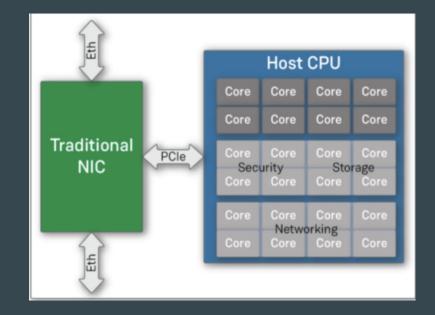
 $\bullet \bullet \bullet$

Presentation by Augustin Scanlon

Section 1: The Evolution of Network Interface Cards (NICs) and Data Center Challenges

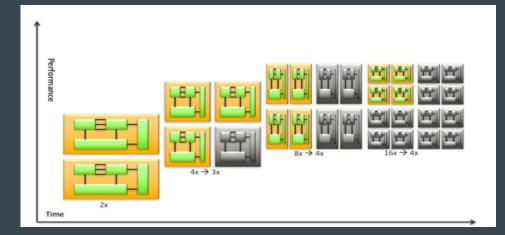
Introduction to NICs

- Brief context review
- Journey back to 1998
- Challenge: Computers didn't have built-in network functionality
 - Example: Upgrading not feasible due to cost
 - Solution: Buy a NIC from RadioShack, install it, set up drivers, and connect to the internet


CPU and NIC Interaction (Old Model)

• CPU

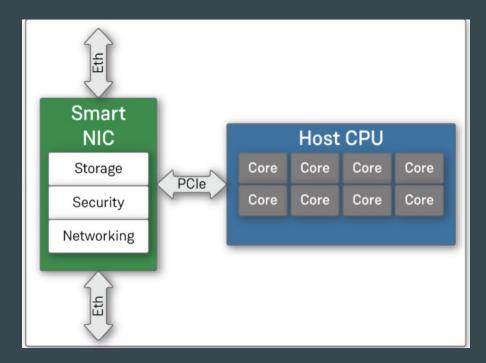
- Responsible for managing the network stack, assembling/disassembling packets
- Performed bulk of network-related tasks


• NIC's:

- Focused on physical network connection, data formatting, and error checking
- CPU handled most of the processing

Inevitable Performance Slowdown

- For a while, this model worked well
- Technological forces:
 - Moore's Law: Slowing down of CPU performance improvements
 - Dennard Scaling: Insufficient to meet increasing network demands (see Dark Silicon)
- Impact:
 - Network speeds increased to 100Gbps, 200Gbps, etc.
 - CPUs couldn't keep up with both applications and network tasks
 - Real-time processing challenges for data centers

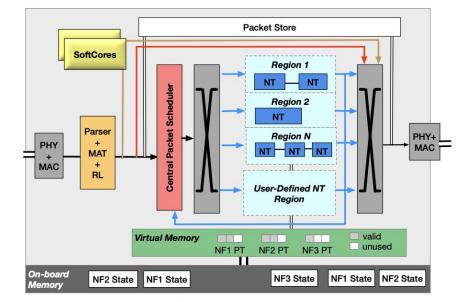

Challenges in Modern Data Centers

- Multi-Tenancy:
 - Supporting multiple tenants with varying network tasks in real-time
 - Flexible, scalable solutions required
- Scalability:
 - Cloud workloads fluctuate, data centers must scale dynamically
 - Traditional CPUs and older network solutions struggle to meet these demands

Section 2: What are SmartNICs?

Introduction to SmartNICs

- **Solution:** SmartNICs, particularly FPGA-based SmartNICs like SuperNIC
- Why SmartNICs?
 - Offload network tasks from the CPU
 - Composed of FPGAs, ASICs, or ARM cores


General SmartNIC Function and Benefits

- Key Benefits of SmartNICs
 - **Task Offloading**: Packet processing, encryption, and firewall management
 - **Programmability:** Especially when FPGA-based, allows customization of network operations for specific workloads in data centers.
 - **Performance Efficiency:** Reduce latency and increase data throughput.
- Types of SmartNICs
 - ARM-based SmartNICs: ARM cores for network processing, limitations at high data rates (e.g., 100Gbps).
 - **ASIC-based SmartNICs:** Excellent performance for fixed functions but lack flexibility.
 - **FPGA-based SmartNICs:** Balance programmability and high-speed processing, ideal for dynamic, cloud-based workloads.

Section 3: SuperNIC Architecture and Design

Overview of SuperNIC

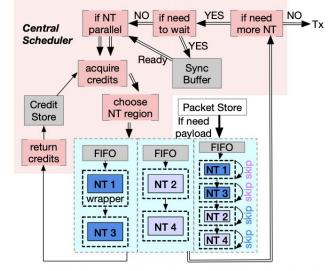

- FPGA-based SmartNIC platform
 - Key objective: Efficiently offload network functionalities in multi-tenant environments
 - **Multi-tenancy:** Ensures tasks are fairly distributed across multiple users
 - Virtual chains of network tasks mapped onto FPGA regions

Figure 2: sNIC On-Board Design. *RL: Rate Limiter. PT: Page Table. Orange lines: control message path. Red lines: packets with no NT processing.*

Detailed Design of FPGA Regions

- FPGA Regions:
 - Programmable hardware for executing network tasks (NTs)
 - Real-time dynamic reconfiguration to adapt to tenant needs
 - Virtual NT chains (sequence of NTs) map onto FPGA regions for processing
 - Reconfiguration for tasks: Regions reallocated based on load and tenant requirements

Figure 3: sNIC Packet Scheduler and NT Region Design. Double arrows, single arrows, and thick arrows represent packet headers, credits, and packet payload.

Task Management with Directed Acyclic Graphs (DAGs)

- DAGs for organizing tasks:
 - \circ DAGs arrange tasks in a flowchart-like structure (no loops)
 - **Parallel Processing:** Tasks executed simultaneously to reduce latency
- DAG Reconfiguration:
 - Dynamic reconfiguration of DAGs for changing workload demands
 - \circ Task skipping allows SuperNIC to bypass unnecessary steps, optimizing processing

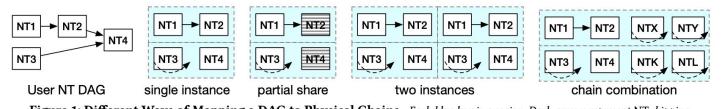
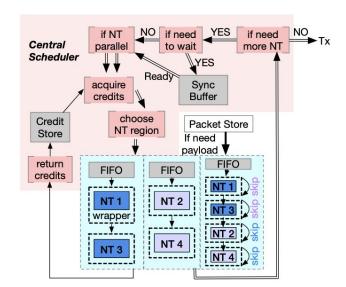



Figure 1: Different Ways of Mapping a DAG to Physical Chains. Each blue box is a region. Dash arrows represent NT skipping.

Schedule and Resource Allocation

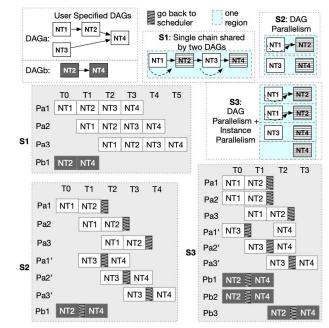

- Packet Scheduling Mechanism:
 - Central scheduler assigns incoming packets to FPGA regions
 - Scheduler steps back once assignment is made, allowing FPGA to handle tasks
- Fair Resource Sharing:
 - Space-sharing and time-sharing balance FPGA resources between tenants
 - **Time-sharing:** Ensures no tenant monopolizes resources

Figure 3: sNIC Packet Scheduler and NT Region Design. Double arrows, single arrows, and thick arrows represent packet headers, credits, and packet payload.

Task Optimization and NT Skipping

- NT Skipping:
 - Skips unnecessary tasks (e.g., encryption) to improve efficiency
 - Real-time Skipping: Based on traffic requirements
- Parallelism:
 - **DAG Parallelism:** Executes different parts of the DAG simultaneously
 - Instance Parallelism: Multiple instances of the same DAG handle packets concurrently
 - **FPGA Optimization:** Efficient space utilization by consolidating tasks into FPGA regions

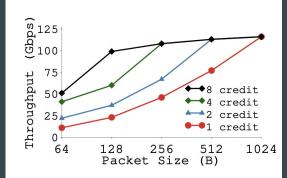
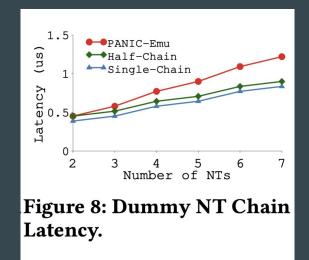


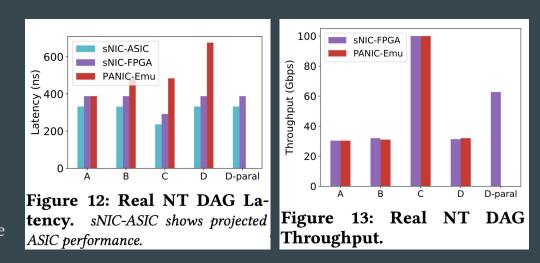
Figure 4: sNIC NT Pipeline. Two deployed DAGs, a and b. S1, S2, and S3 are three ways of executing them. Pa_i/Pb_i refer to the *i*th packet targeting the first/second DAG, P'_i refers to a forked packet. T_i refers to a time unit in the timeline.


Section 4: SuperNIC Performance Evaluation

Benchmark Results

- **Throughput:** Supports up to **100Gbps** with only **196ns** scheduling overhead
- Latency:
 - Reduces network task DAG latency by
 40% compared to PANIC.
 - Adds 1.3 microseconds to packet latency due to third-party PHY/MAC modules
 - Scheduler itself contributes just 196ns
 of delay
- FPGA Utilization:
 - Improves FPGA resource utilization by up to **3.83x** compared to PANIC.

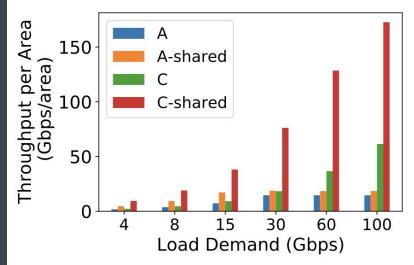
Figure 7: Throughput with different credits.


Comparison with Other SmartNIC Solutions

• ASIC-based SmartNICs:

- Fixed-function design limits flexibility and adaptability.
- Optimized for specific tasks but lacks programmability and scalability.

• PANIC:


- Higher latency and less efficient compared to SuperNIC.
- SuperNIC provides better resource scalability and dynamic task management.
- More efficient due to virtual NT chain mapping.

SuperNIC's Scalability and Future Potential

• Scalability:

- Ideal for dynamic cloud environments due to flexible FPGA reconfiguration.
- Dynamically allocates resources based on workload.
- Parallelism:
 - **DAG Parallelism:** Executes tasks within the DAG simultaneously.
 - Instance Parallelism: Runs multiple instances of the same DAG concurrently for greater throughput.
- Future Improvements:
 - Potential refinements in scheduling overhead and FPGA resource allocation efficiency.

Figure 14: NT sharing A and C (foreground) sharing chain D (back-ground).

Works Cited

Casey. "What Is the Difference Between SmartNIC and NIC?" Fibermall.Com (blog), September 25, 2023. https://www.fibermall.com/blog/difference-between-smartnic-and-nic.htm.
Lin, Will, Yizhou Shan, Ryan Kosta, Arvind Krishnamurthy, and Yiying Zhang. "SuperNIC: An FPGA-Based, Cloud-Oriented SmartNIC." In Proceedings of the 2024 ACM/SIGDA International Symposium on Field Programmable Gate Arrays, 130–41. Monterey CA USA: ACM, 2024. https://doi.org/10.1145/3626202.3637564.
Lu, Chien-Ping. "AI, Native Supercomputing and the Revival of Moore's Law." APSIPA Transactions on Signal and Information Processing 6, no. 1 (2017). https://doi.org/10.1017/ATSIP.2017.9.