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Background

● Graph processing performance in large demand with 
rapid growth of data

● Many attempts have been made to tackle the challenges 
of designing efficient FPGA-based accelerators for graph 
processing.

● Still requires hardware expertise and development 
efforts from developers
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ThunderGP

● Open-source HLS-based graph 
processing framework on FPGAs

● Allows for FPGA-accelerated graph 
processing with high level 
functions - no knowledge of 
hardware needed

● Utilizes Gather-Apply-Scatter (GAS) 
model
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HDL & HLS Difficulties
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HLS for FPGAs
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Existing Studies Similar to ThunderGP
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Downsides of Similar Works

● Poor programmability
○ No existing APIs 
○ Usage of HDLs such as Verilog/VHDL

● No automated design flow
○ Requires manual performance tuning

● Poor usability
○ Majority of works not available to public
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Existing Challenges to be Addressed

Challenge 1: Be able to support various graph processing algorithms (ex. 
bfs (breadth first search), sssp (single source shortest path), etc.)

Solution: Design architectural template with the GAS model

Challenge 2: Programming without hardware expertise

Solution: Only expose high-level APIs to developers and take everything else 
to be turned into synthesizable code

Challenge 3: Utilize high-performance FPGAs efficiently

Solution 3: Scale to Multi-SLR FPGAs and schedule graph data appropriately
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ThunderGP Overview
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Gather-Apply-Scatter Model

● Provides high level abstraction 
for various graph processing 
algorithms
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Gather-Apply Supply-Model Further Defined
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GAS Model API Functions
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Execution Flow

● Vertex buffering with RAMs
● Multiple PEs (processing elements) with shuffle

13



Benefits of Multiple PEs
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Memory Access Optimizations
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Automated Generation
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Graph Partitioning
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Scheduling Partitions
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Evaluation
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Overall Performance
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Conclusion

Benefits

● FPGA graph-processing ability without hardware expertise needed

Strengths

● Delved into the algorithms used and explained them fairly well
● Great overview figure of ThunderGP

Weaknesses

● Figures were extremely out of place
● Little to no elaboration on Host-APIs provided by system
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