
ThunderGP: HLS-based 
Graph Processing 

Framework on FPGAs

William Yin

1



Background

● Graph processing performance in large demand with 
rapid growth of data

● Many attempts have been made to tackle the challenges 
of designing efficient FPGA-based accelerators for graph 
processing.

● Still requires hardware expertise and development 
efforts from developers

2



ThunderGP

● Open-source HLS-based graph 
processing framework on FPGAs

● Allows for FPGA-accelerated graph 
processing with high level 
functions - no knowledge of 
hardware needed

● Utilizes Gather-Apply-Scatter (GAS) 
model

3



HDL & HLS Difficulties

4



HLS for FPGAs

5



Existing Studies Similar to ThunderGP

6



Downsides of Similar Works

● Poor programmability
○ No existing APIs 
○ Usage of HDLs such as Verilog/VHDL

● No automated design flow
○ Requires manual performance tuning

● Poor usability
○ Majority of works not available to public

7



Existing Challenges to be Addressed

Challenge 1: Be able to support various graph processing algorithms (ex. 
bfs (breadth first search), sssp (single source shortest path), etc.)

Solution: Design architectural template with the GAS model

Challenge 2: Programming without hardware expertise

Solution: Only expose high-level APIs to developers and take everything else 
to be turned into synthesizable code

Challenge 3: Utilize high-performance FPGAs efficiently

Solution 3: Scale to Multi-SLR FPGAs and schedule graph data appropriately
8



ThunderGP Overview

9



Gather-Apply-Scatter Model

● Provides high level abstraction 
for various graph processing 
algorithms

10



Gather-Apply Supply-Model Further Defined

11



GAS Model API Functions

12



Execution Flow

● Vertex buffering with RAMs
● Multiple PEs (processing elements) with shuffle

13



Benefits of Multiple PEs

14



Memory Access Optimizations

15



Automated Generation

16



Graph Partitioning

17



Scheduling Partitions

18



Evaluation

19



Overall Performance

20



Conclusion

Benefits

● FPGA graph-processing ability without hardware expertise needed

Strengths

● Delved into the algorithms used and explained them fairly well
● Great overview figure of ThunderGP

Weaknesses

● Figures were extremely out of place
● Little to no elaboration on Host-APIs provided by system

21



References

● Chen, Xinyu, et al. “ThunderGP: The 2021 ACM/SIGDA International 
Symposium on Field-Programmable Gate Arrays.” ACM Conferences, 17 Feb. 
2021, dl.acm.org/doi/10.1145/3431920.3439290.

● Pregel, GraphLab, and Xstream, 
id2221kth.github.io/slides/2018/11_graph_processing_part1.pdf. 

● “Nimbix: Empowering Enterprises with HPC-Enabled Secure Cloud 
Solutions.” Eviden, 30 Oct. 2023, www.nimbix.net/. 

22

http://dl.acm.org/doi/10.1145/3431920.3439290
http://id2221kth.github.io/slides/2018/11_graph_processing_part1.pdf
http://www.nimbix.net/

