ThunderGP: HL.S-based
Graph Processing
Framework on FPGASs

William Yin

Background

e Graph processing performance in large demand with
rapid growth of data

e Many attempts have been made to tackle the challenges
of designing efficient FPGA-based accelerators for graph
processing.

e Still requires hardware expertise and development
efforts from developers

ThunderGP

e Open-source HLS-based graph
processing framework on FPGAs

e Allows for FPGA-accelerated graph
processing with high level
functions - no knowledge of
hardware needed

e Utilizes Gather-Apply-Scatter (GAS)
el ThunderGP

HDL & HLS Ditficulties

T NIMBIX
o)

-0 C Alibaba Clou
BaichaE|

HLS for FPGAs

Verilog
ASIC Designs
Weakly Typed

Low Verbosity

Partially Deterministic

More “C” like

VHDL
FPGA Designs
Strongly Typed
High Verbosity
Very Deterministic

Non “C” like

Existing Studies Similar to ThunderGP

Works Arr PL® Auto’ Eva' App’ Public

(F) GraphGen [29] HDL HW
(F) FPGP [20] HDL HW
(F) HitGraph [24] HDL SIM
(F) Foregraph [23] HDL SIM
(F) Zhou et al. [21] HDL SIM
(F) Chen et al. [32] HLS (OpenCL) HW
(L) GraphOps [27] HLS (Max]) HW
(A) FabGraph [26] HDL SIM
(A) Zhou et al. [22] HDL SIM
(A) AccuGraph [25] HDL SIM

(F) ThunderGP | ¢ HLS (C++) v HW

N

XXX XXX XXX

XXXXX X xS
N wwN OO AN WS —
VXXX A XX § X x

! Whether the system provides explicit application programming interface;

2 Required programming language for development;

3 Whether the system supports automated design flow;

4 Evaluation based on simulation (SIM) or real hardware implementation (HW);
3 Number of evaluated applications with the system;

® Whether the system is publicly available.

Downsides of Similar Works

e Poor programmability
o No existing APIs
o Usage of HDLs such as Verilog/VHDL
e No automated design flow
o Requires manual performance tuning
e Poor usability
o Majority of works not available to public

Existing Challenges to be Addressed

Challenge 1: Be able to support various graph processing algorithms (ex.
bfs (breadth first search), sssp (single source shortest path), etc.)

Solution: Design architectural template with the GAS model
Challenge 2: Programming without hardware expertise

Solution: Only expose high-level APls to developers and take everything else
to be turned into synthesizable code

Challenge 3: Utilize high-performance FPGAs efficiently
Solution 3: Scale to Multi-SLR FPGAs and schedule graph data appropriately

8

ThunderGP Overview

@
Accelerator
Graph Partitioning | information [Accelerator Accelerator
& Scheduling Generation Template

Partitions & Scheduling Plan Synthesizable Accelerator

l | SDAccel Development Environment |

\Memory = lﬂ cru <CEES) FPGA E & Memory I

Gather-Apply-Scatter Model

Algorithm 1 The GAS Model

Provides high level abstraction
for various graph processing
algorithms

1: while not done do
2: for all e in Edges do > The Scatter stage
u = new update
u.dst = e.dst
u.value = Scatter(e.w, e.src.value)
end for
for all u in Updates do > The Gather stage
u.dst.accum = Gather(u.dst.accum, u.value)
: end for
10: for all vin Vertices do > The Apply stage
11: Apply(v.accum, v.value)
12: end for
13: end while

10

Gather-Apply Supply-Model Further Defined

GAS model’s three stages [1]:

» Scatter: for an edge, an update
tuple is generated with format of
<destination, value>.

« E.g. <2, x>, <7, y> for vertex 1

Gather: accumulates values to
destination vertices.

s Eg Op(P2 ’ X), Op(P7 ’ y)

Memory accesses for vertex | App|y an apply function on all
I 1 : the vertices.
Py|P, |P,| P3| Py | Ps

GAS Model API Functions

APIs

prop_t scatterFunc ()
prop_t gatherFunc ()

prop_t applyFunc ()

Table 2: Acc-APIs (user defined functions).

Parameters

vertex property, edge property.
update tuple, buffered destination vertices.
vertex property”, outdegree”, etc”.

Return Description

update value Calculates update value for destination vertices
accumulated value Gathers update values to buffered destination vertices
latest vertex property Updates vertex properties for next iteration

12

Execution Flow

e Vertex buffering with RAMs
e Multiple PEs (processing elements) with shuffle

Global Memory (partitions)
=

Memory Controller

Figure 2: The overview of the accelerator template.

13

Benefits of Multiple PEs

14

Memory Access Optimizations

Source vertices in global memory

0~15 | 16~31 | -- 240~255
A PN T e e
0/0]013(3| 16 | 20 | 31 255

Requests to source vertices

The accesses to source vertices from scatter PEs

Automated Generation

Figure 5: The example implementation on VCU1525 with
three SLRs and four memory channels.

16

Graph Partitioning

Partition 1 Partition 2
c) Format after graph partitioning

Figure 6: The example of graph partitioning.

17

Scheduling Partitions

Edge Chunks of P1 r i | Estimated ! Scheduling plan:

execution time i P1:1234

B Edge st

Vertex set

&
3

Partition 1 (P1) Greedy sez::rch

U

E

--—

!
’

it 4 :
Edge Chunksof P21 J

Evaluation
Table 5: The graph applications.

Description

Scores the importance and authority of a website through its links
Multiplies a sparse matrix (represented as a graph) with a vector
Traverses a graph in a breadth ward from the selected node

Finds the shortest path from a selected node to another node
Detects nodes which could spread information very efficiently
Measures the transitive influence or connectivity of nodes

Finds maximal subset of vertices of the graph with connection

Table 7: Frequency (MHz) improvement on a single SLR.

Freq. PR SpMV BES SSSP CcC AR WCC
Baseline 168 253 257 184 198 173 247

SS 242 286 281 231 267 273 243
SS+MDD 297 296 299 300 287 301 296

Improvement | 77% 17% 16% 63% 45% 74% 20%

19

Overall Performance

35 oCA oCO oPRE oDAE

30
025
320
815
w

« jgEHll S B@E@ﬁ@ i

Q.'\q&\qgfho'{?o'\'bd‘?ié & ‘;““{9 * SR L Q+¢8 \x‘\ \>(‘\
Graphs

® 1CH/1SLR @ 2CHs/2SLRs ©3CHs/3SLRs 04CHs/3SLRs

111

R19 R21 R24 G23 G24 G25 WT GG AM MG HD FU BB TC PK WP HW LI TW
Graphs 20

Conclusion

Benefits
e FPGA graph-processing ability without hardware expertise needed
Strengths

e Delved into the algorithms used and explained them fairly well
e Great overview figure of ThunderGP

Weaknesses

e Figures were extremely out of place
e Little to no elaboration on Host-APIs provided by system

21

References

e Chen, Xinyuy, et al. “ThunderGP: The 2021 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays.” ACM Conferences, 17 Feb.
2021, dl.acm.org/doi/10.1145/3431920.3439290.

e Pregel, GraphLab, and Xstream,
id2221kth.github.io/slides/2018/11_graph_processing_part1.pdf.

e “Nimbix: Empowering Enterprises with HPC-Enabled Secure Cloud
Solutions.” Eviden, 30 Oct. 2023, www.nimbix.net/.

22

http://dl.acm.org/doi/10.1145/3431920.3439290
http://id2221kth.github.io/slides/2018/11_graph_processing_part1.pdf
http://www.nimbix.net/

