
ORNL is managed by UT-Battelle LLC for the US Department of Energy

ScaleHLS: A New Scalable HLS Framework
on Multi-Level Intermediate Representation

Anthony Cabrera
CSE565M Paper Presentation

October 3, 2023

22

Problem Sketch/Intuition

Vitis HLS

LLVM IR

33

Problem Sketch/Intuition

Vitis HLS

Large
semantic

gap!

LLVM IR

Large
semantic

gap!

44

55

66

77

88

Main Takeaway

• Current HLS tooling is built on a single, low level of abstraction,
e.g., LLVM IR.

• However, the semantic gap between C/C++ and LLVM IR is

very large, which makes it challenging to perform higher

abstraction level optimizations.

• The goal of ScaleHLS is to fill this semantic gap with hierarchical
intermediate representations that make it easier to optimize the

HLS design, subsequently explore the design space.

https://github.com/UIUC-ChenLab/scalehls

99

Contributions of ScaleHLS

• Hierarchical representations of HLS designs to make reasoning
about optimizations easier

• Provide optimization passes and infrastructure to operate at
the level of graph, loop, and directive levels

• An automated DSE engine to find the Pareto curve between
latency and space

• Provides and HLS C front-end to MLIR and an HLS C/C++
emitter

Background

1111

MLIR in a Nutshell

• Close the semantic gap between [input language] and LLVM
IR through hierarchical intermediate representations, i.e.,
progressive lowering

• Take advantage of pre-existing SW, passes, dialects, and
optimizations and plug them in to your own compiler flows

1212

MLIR in a Nutshell

• Close the semantic gap between [input language] and LLVM
IR through hierarchical intermediate representations, i.e.,
progressive lowering

• Take advantage of pre-existing SW, passes, dialects, and
optimizations and plug them in to your own compiler flows

ScaleHLS Design

1414

ScaleHLS Representation:
Graph Level

• Leverage pre-existing onnx dialect* for Graph-level IR and
representing computation graphs

– E.g., %output = "onnx.Conv"(%input, %weight) {...} :
(tensor<1x3x34x34xf32>, tensor<64x3x3x3xf32>) ->

 tensor<1x64x32x32xf32>

* The figure has been changed since its original publication date

1515

ScaleHLS Representation:
Loop Level

• Leverage pre-existing affine and scf dialect for Loop-level IR
for loop level transformations and analysis

* The figure has been changed since its original publication date

1616

ScaleHLS Representation:
HLS Level

• Develop HLSCpp to represent HLS-specific structures and
program directives, which provides the capability of
conducting directive optimizations and supports the emission of
synthesizable C/C++ code

* The figure has been changed since its original publication date

1717

Array Partitioning MLIR Representation
(d0orig, d1orig) -> (partition idx x, partition idx y, physical idx x, physical idx y)

(b) example: (3,6)-> ?

1818

Array Partitioning MLIR Representation
(d0orig, d1orig) -> (partition idx x, partition idx y, physical idx x, physical idx y)

1919

Array Partitioning MLIR Representation
(d0orig, d1orig) -> (partition idx x, partition idx y, physical idx x, physical idx y)

(b) example: (3,6)-> ?

2020

Array Partitioning MLIR Representation
(d0orig, d1orig) -> (partition idx x, partition idx y, physical idx x, physical idx y)

(b) example: (3,6)-> ?

d0 mod 2 = 3 mod 2 = 1

2121

Array Partitioning MLIR Representation
(d0orig, d1orig) -> (partition idx x, partition idx y, physical idx x, physical idx y)

(b) example: (3,6)-> ?

d0 mod 2 = 3 mod 2 = 1
0

2222

Array Partitioning MLIR Representation
(d0orig, d1orig) -> (partition idx x, partition idx y, physical idx x, physical idx y)

(b) example: (3,6)-> ?

d0 mod 2 = 3 mod 2 = 1
0
d0 floordiv 2

 = 3 floordiv 2 = 1

2323

Array Partitioning MLIR Representation
(d0orig, d1orig) -> (partition idx x, partition idx y, physical idx x, physical idx y)

(b) example: (3,6)-> ?

d0 mod 2 = 3 mod 2 = 1
0
d0 floordiv 2

 = 3 floordiv 2 = 1
d1 = 6

2424

Array Partitioning MLIR Representation
(d0orig, d1orig) -> (partition idx x, partition idx y, physical idx x, physical idx y)

(b) example: (3,6)-> ?

d0 mod 2 = 3 mod 2 = 1
0
d0 floordiv 2

 = 3 floordiv 2 = 1
d1 = 6

Thus,
(3,6)-> (1, 0, 1, 6)

2525

ScaleHLS Optimization

• Apply the appropriate flavor of pass at
the appropriate representation level

– e.g., apply graph passes on graph
representation

• Note the passes not in bold in the Loop
row; those are passes that already exist
and are compatible with the dialects in
that level of representation

2626

Graph Transform Example
Explores tradeoff between latency and space

• Assume each Proc takes 1t time.

• The goal is to apply the HLS dataflow
pragma to this design

• 4(a) violates the bypass path constraint of
Vitis HLS

• 4(b) legalizes this dataflow by combining the
offending sub-graph into it’s own stage.
Results in 3-stage pipeline with latency = 3t

• 4(c) aggressively legalizes by adding enough
copy nodes to remove bypass path. Results in
5-stage pipeline with latency = 1t, but more
HW needed to achieve this

• Latency/space tradeoff in 4(d) by
introducing split-function pass, which
groups every two stages. Latency = 2t with
only one additional copy node required

2727

Full Example

2828

Full Example

2929

Full Example

3030

Full Example

3131

Automatic Design Space Exploration

• Before emitting final design, perform automated DSE to find the
Pareto frontier for the latency/area tradeoff

– DSE, in this case, is just experimenting with different combinations of the
available passes for ScaleHLS

• Performing PCA reveals that Pareto optimal points cluster and
informs their DSE algorithm

Results

3333

Best Configuration for Benchmarks &
Scalability Study

”Baseline” is the baseline HLS design

3434

Result for DNN Models

”
B

a
se

lin
e

”
 is th

e
 b

a
se

lin
e

 H
LS

 d
e

sig
n

3535

Conclusion

• Contribution

– An end-to-end framework that closes the semantic gap between HLS
and Verilog

• Strengths

– Novel approach to closing the semantic gap between HLS and RTL

– Code is open-source

• Weaknesses

– Number of benchmarked applications is small and of a similar flavor
(GEMM). More applications from different domains would be beneficial

– Approach requires using AMD software ecosystem and hardware
backends

	Slide 1: ScaleHLS: A New Scalable HLS Framework on Multi-Level Intermediate Representation
	Slide 2: Problem Sketch/Intuition
	Slide 3: Problem Sketch/Intuition
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Main Takeaway
	Slide 9: Contributions of ScaleHLS
	Slide 10: Background
	Slide 11: MLIR in a Nutshell
	Slide 12: MLIR in a Nutshell
	Slide 13: ScaleHLS Design
	Slide 14: ScaleHLS Representation: Graph Level
	Slide 15: ScaleHLS Representation: Loop Level
	Slide 16: ScaleHLS Representation: HLS Level
	Slide 17: Array Partitioning MLIR Representation (d0orig, d1orig) -> (partition idx x, partition idx y, physical idx x, physical idx y)
	Slide 18: Array Partitioning MLIR Representation (d0orig, d1orig) -> (partition idx x, partition idx y, physical idx x, physical idx y)
	Slide 19: Array Partitioning MLIR Representation (d0orig, d1orig) -> (partition idx x, partition idx y, physical idx x, physical idx y)
	Slide 20: Array Partitioning MLIR Representation (d0orig, d1orig) -> (partition idx x, partition idx y, physical idx x, physical idx y)
	Slide 21: Array Partitioning MLIR Representation (d0orig, d1orig) -> (partition idx x, partition idx y, physical idx x, physical idx y)
	Slide 22: Array Partitioning MLIR Representation (d0orig, d1orig) -> (partition idx x, partition idx y, physical idx x, physical idx y)
	Slide 23: Array Partitioning MLIR Representation (d0orig, d1orig) -> (partition idx x, partition idx y, physical idx x, physical idx y)
	Slide 24: Array Partitioning MLIR Representation (d0orig, d1orig) -> (partition idx x, partition idx y, physical idx x, physical idx y)
	Slide 25: ScaleHLS Optimization
	Slide 26: Graph Transform Example Explores tradeoff between latency and space
	Slide 27: Full Example
	Slide 28: Full Example
	Slide 29: Full Example
	Slide 30: Full Example
	Slide 31: Automatic Design Space Exploration
	Slide 32: Results
	Slide 33: Best Configuration for Benchmarks & Scalability Study
	Slide 34: Result for DNN Models
	Slide 35: Conclusion

