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Problem Sketch/Intuition
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Main Takeaway

• Current HLS tooling is built on a single, low level of abstraction, 
e.g., LLVM IR. 

• However, the semantic gap between C/C++ and LLVM IR is 

very large, which makes it challenging to perform higher 

abstraction level optimizations. 

• The goal of ScaleHLS is to fill this semantic gap with hierarchical 
intermediate representations that make it easier to optimize the 

HLS design, subsequently explore the design space. 

https://github.com/UIUC-ChenLab/scalehls
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Contributions of ScaleHLS

• Hierarchical representations of HLS designs to make reasoning 
about optimizations easier

• Provide optimization passes and infrastructure to operate at 
the level of graph, loop, and directive levels

• An automated DSE engine to find the Pareto curve between 
latency and space

• Provides and HLS C front-end to MLIR and an HLS C/C++ 
emitter



Background
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MLIR in a Nutshell

• Close the semantic gap between [input language] and LLVM 
IR through hierarchical intermediate representations, i.e., 
progressive lowering

• Take advantage of pre-existing SW, passes, dialects, and 
optimizations and plug them in to your own compiler flows
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MLIR in a Nutshell

• Close the semantic gap between [input language] and LLVM 
IR through hierarchical intermediate representations, i.e., 
progressive lowering

• Take advantage of pre-existing SW, passes, dialects, and 
optimizations and plug them in to your own compiler flows



ScaleHLS Design
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ScaleHLS Representation:
Graph Level

• Leverage pre-existing onnx dialect* for Graph-level IR and 
representing computation graphs

– E.g., %output = "onnx.Conv"(%input, %weight) {...} :  
(tensor<1x3x34x34xf32>, tensor<64x3x3x3xf32>) ->  

 tensor<1x64x32x32xf32>

* The figure has been changed since its original publication date
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ScaleHLS Representation:
Loop Level

• Leverage pre-existing affine and scf dialect for Loop-level IR 
for loop level transformations and analysis

* The figure has been changed since its original publication date
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ScaleHLS Representation:
HLS Level

• Develop HLSCpp to represent HLS-specific structures and 
program directives, which provides the capability of 
conducting directive optimizations and supports the emission of 
synthesizable C/C++ code

* The figure has been changed since its original publication date
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Array Partitioning MLIR Representation
(d0orig, d1orig) -> (partition idx x, partition idx y, physical idx x, physical idx y)

(b) example: (3,6)-> ?
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Array Partitioning MLIR Representation
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Array Partitioning MLIR Representation
(d0orig, d1orig) -> (partition idx x, partition idx y, physical idx x, physical idx y)

(b) example: (3,6)-> ?

d0 mod 2 = 3 mod 2 = 1
0
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Array Partitioning MLIR Representation
(d0orig, d1orig) -> (partition idx x, partition idx y, physical idx x, physical idx y)

(b) example: (3,6)-> ?

d0 mod 2 = 3 mod 2 = 1
0
d0 floordiv 2

  = 3 floordiv 2 = 1
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Array Partitioning MLIR Representation
(d0orig, d1orig) -> (partition idx x, partition idx y, physical idx x, physical idx y)

(b) example: (3,6)-> ?

d0 mod 2 = 3 mod 2 = 1
0
d0 floordiv 2

  = 3 floordiv 2 = 1
d1 = 6
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Array Partitioning MLIR Representation
(d0orig, d1orig) -> (partition idx x, partition idx y, physical idx x, physical idx y)

(b) example: (3,6)-> ?

d0 mod 2 = 3 mod 2 = 1
0
d0 floordiv 2

  = 3 floordiv 2 = 1
d1 = 6

Thus, 
(3,6)-> (1, 0, 1, 6)
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ScaleHLS Optimization

• Apply the appropriate flavor of pass at 
the appropriate representation level

– e.g., apply graph passes on graph 
representation

• Note the passes not in bold in the Loop 
row; those are passes that already exist 
and are compatible with the dialects in 
that level of representation
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Graph Transform Example
Explores tradeoff between latency and space

• Assume each Proc takes 1t time.

• The goal is to apply the HLS dataflow 
pragma to this design

• 4(a) violates the bypass path constraint of 
Vitis HLS

• 4(b) legalizes this dataflow by combining the 
offending sub-graph into it’s own stage. 
Results in 3-stage pipeline with latency = 3t

• 4(c) aggressively legalizes by adding enough 
copy nodes to remove bypass path. Results in 
5-stage pipeline with latency = 1t, but more 
HW needed to achieve this

• Latency/space tradeoff in 4(d) by 
introducing split-function pass, which 
groups every two stages. Latency = 2t with 
only one additional copy node required 
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Full Example
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Full Example
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Full Example
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Full Example
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Automatic Design Space Exploration

• Before emitting final design, perform automated DSE to find the 
Pareto frontier for the latency/area tradeoff

– DSE, in this case, is just experimenting with different combinations of the 
available passes for ScaleHLS

• Performing PCA reveals that Pareto optimal points cluster and 
informs their DSE algorithm 



Results
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Best Configuration for Benchmarks &
Scalability Study

”Baseline” is the baseline HLS design
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Result for DNN Models
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Conclusion

• Contribution

– An end-to-end framework that closes the semantic gap between HLS 
and Verilog

• Strengths

– Novel approach to closing the semantic gap between HLS and RTL

– Code is open-source

• Weaknesses

– Number of benchmarked applications is small and of a similar flavor 
(GEMM). More applications from different domains would be beneficial

– Approach requires using AMD software ecosystem and hardware 
backends
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