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Where We’re Headed

Figure 1: Dividing the FFT into different stages allows for task pipelining

across each of these stages. The figure shows an example with three FFT

stages (i.e., an 8 point FFT).
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FFT Background



A More Efficient DFT

• Performing the DFT directly using matrix-vector multiply requires

O(n2) multiply and add operations, for an input signal with n

samples.

• It is possible to reduce the complexity by exploiting the structure of

the constant coefficients in the matrix.

• This S matrix encodes the coefficients of the DFT; each row of this

matrix corresponds to a fixed number of rotations around the

complex unit circle.

• These values have a significant amount of redundancy, and that can

be exploited to reduce the complexity of the algorithm.
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Foundation Building

• The FFT brings about a reduction in complexity by taking

advantage of symmetries in the DFT.

• Recall that the DFT performs a matrix vector multiplication, i.e.,

G [] = S [][] · g [], where g [] is the input data, G [] is the frequency

domain output data, and S [][] are the DFT coefficients.
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2 Point FFT



Foundation Building: 2 Point FFT

For a 2 point DFT, the values of S are:

S =

[
W 00

2 W 01
2

W 10
2 W 11

2

]
(1)

Here we use the notation W = e−j2π.

• The e−j2π or W terms are often called twiddle factors.

• The superscript on W denotes values that are added to the

numerator and the subscript on the W indicates those values added

in the denominator of the complex exponential.

• For example, W 23
4 = e

−j2π·2·3
4 .

• This is similar to the s value used in the DFT discussion where

s = e
−j2π

N . The relationship between s and W is s = WN .
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Calculating the 2 Point FFT

Recalling W XY
Z = e

−j2π·X·Y
Z .[

G [0]

G [1]

]
=

[
W 00

2 W 01
2

W 10
2 W 11

2

]
·

[
g [0]

g [1]

]
(2)

Expanding the two equations for a 2 point DFT gives us:

G [0] = g [0] · e
−j2π·0·0

2 + g [1] · e
−j2π·0·1

2

= g [0] + g [1]
(3)

due to the fact that since e0 = 1. The second frequency term

G [1] = g [0] · e
−j2π·1·0

2 + g [1] · e
−j2π·1·1

2

= g [0]− g [1]
(4)

since e
−j2π·1·1

2 = e−jπ = −1.
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Visualizing the 2 Point DFT

g[0]

g[1]
+

-

G[0]

G[1]

g[0]

g[1] -

G[0]

G[1]

a) b)

W0
2

Figure 2: Part a) is a dataflow graph for a 2 point DFT/FFT. Part b) shows

the same computation, but viewed as a butterfly structure. This is a common

representation for the computation of an FFT in the digital signal processing

domain.
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Visualizing the 2 Point DFT

g[0]

g[1]
+

-

G[0]

G[1]

g[0]

g[1] -

G[0]

G[1]

a) b)

W0
2

• When two lines come together this indicates an addition operation.

• Any label on the line itself indicates a multiplication of that label by

the value on that line.

• There are two labels in this figure.

• The ‘−’ sign on the bottom horizontal line indicates that this value

should be negated.

• This followed by the addition denoted by the two lines intersecting is

the same as subtraction. The second label is W 0
2 .
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4 Point FFT



Computing the 4 Point FFT

Now let us consider a slightly larger dft – a 4 point dft, i.e., one that has

4 inputs, 4 outputs, and a 4× 4 S matrix. The values of S for a 4 point

dft are:

S =


W 00

4 W 01
4 W 02

4 W 03
4

W 10
4 W 11

4 W 12
4 W 13

4

W 20
4 W 21

4 W 22
4 W 23

4

W 30
4 W 31

4 W 32
4 W 33

4

 (5)

And the dft equation to compute the frequency output terms are:
G [0]

G [1]

G [2]

G [3]

 =


W 00

4 W 01
4 W 02

4 W 03
4

W 10
4 W 11

4 W 12
4 W 13

4

W 20
4 W 21

4 W 22
4 W 23

4

W 30
4 W 31

4 W 32
4 W 33

4

 ·


g [0]

g [1]

g [2]

g [3]

 (6)
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Computing the 4 Point FFT

Now we write out the equations for each of the frequency domain values

in G [] one-by-one. The equation for G[0] is:

G [0] = g [0] · e
−j2π·0·0

4 + g [1] · e
−j2π·0·1

4 + g [2] · e
−j2π·0·2

4 + g [3] · e
−j2π·0·3

4

= g [0] + g [1] + g [2] + g [3]

(7)

since e0 = 1.

The equation for G [1] is:

G [1] = g [0] · e
−j2π·1·0

4 + g [1] · e
−j2π·1·1

4 + g [2] · e
−j2π·1·2

4 + g [3] · e
−j2π·1·3

4

= g [0] + g [1] · e
−j2π

4 + g [2] · e
−j4π

4 + g [3] · e
−j6π

4

= g [0] + g [1] · e
−j2π

4 + g [2] · e−jπ + g [3] · e
−j2π

4 e−jπ

= g [0] + g [1] · e
−j2π

4 − g [2]− g [3] · e
−j2π

4

(8)

The reductions were done based upon the fact that e−jπ = −1.

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: Fast Fourier Transforms (Pt. 1) FL24::L10 10 / 26



Computing the 4 Point FFT

The equation for G [2] is:

G [2] = g [0] · e
−j2π·2·0

4 + g [1] · e
−j2π·2·1

4 + g [2] · e
−j2π·2·2

4 + g [3] · e
−j2π·2·3

4

= g [0] + g [1] · e
−j4π

4 + g [2] · e
−j8π

4 + g [3] · e
−j12π

4

= g [0]− g [1] + g [2]− g [3]

(9)

The reductions were done by simplifications based upon rotations. E.g.,

e
−j8π

4 = 1 and e
−12jπ

4 = −1 since in both cases use the fact that e−j2π is

equal to 1. In other words, any complex exponential with a rotation by

2π is equal.

Finally, the equation for G [3] is:

G [3] = g [0] · e
−j2π·3·0

4 + g [1] · e
−j2π·3·1

4 + g [2] · e
−j2π·3·2

4 + g [3] · e
−j2π·3·3

4

= g [0] + g [1] · e
−j6π

4 + g [2] · e
−j12π

4 + g [3] · e
−j18π

4

= g [0] + g [1] · e
−j6π

4 − g [2] + g [3] · e
−j10π

4

= g [0] + g [1] · e
−j6π

4 − g [2]− g [3] · e
−j6π

4

(10)

Most of the reductions that we have not seen yet deal with the last term.

It starts out as e
−j18π

4 . It is reduced to e
−j10π

4 since these are equivalent

based upon a 2π rotation, or, equivalently, e
−j10π

4 · e
−j8π

4 and the second

term e
−j8π

4 = 1. Finally, a rotation of π, which is equal to −1, brings it

to e
−j6π

4 . Another way of viewing this is e
−j6π

4 · e
−j4π

4 and e
−j4π

4 = −1.

We leave this term in this unreduced state in order to demonstrate

symmetries in the following equations.

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: Fast Fourier Transforms (Pt. 1) FL24::L10 11 / 26



Reducing e
−j18π

4 to −e
−j6π
4

• It is reduced to e
−j10π

4 since these are equivalent based upon a 2π

rotation, or, equivalently, e
−j10π

4 · e
−j8π

4 and the second term

e
−j8π

4 = 1.

• Finally, a rotation of π, which is equal to −1, brings it to e
−j6π

4 .

Another way of viewing this is e
−j6π

4 · e
−j4π

4 and e
−j4π

4 = −1. We

leave this term in this unreduced state in order to demonstrate

symmetries in the following equations on the next slide.
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Computing the 4 Point FFT

With a bit of reordering, we can view these four equations as:

G [0] = (g [0] + g [2]) + e
−j2π0

4 (g [1] + g [3])

G [1] = (g [0]− g [2]) + e
−j2π1

4 (g [1]− g [3])

G [2] = (g [0] + g [2]) + e
−j2π2

4 (g [1] + g [3])

G [3] = (g [0]− g [2]) + e
−j2π3

4 (g [1]− g [3])

(11)

Exploitable symmetries:

• partition input data nto even and odd elements, i.e., similar

operations for g [0] and g [2], and g [1] and g [3].

• addition and subtraction symmetries on these even and odd

elements, e.g., for G [0] and G [2], the even and odd elements are

summed, and hare subtracted when calculating the frequencies G [1]

and G [3].

• the odd elements in every frequency term are multiplied by a

constant complex exponential W i
4 where i denotes the index for the

frequency output, i.e., G [i ].
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Computing the 4 Point FFT

G [0] = (g [0] + g [2]) + e
−j2π0

4 (g [1] + g [3])

G [1] = (g [0]− g [2]) + e
−j2π1

4 (g [1]− g [3])

G [2] = (g [0] + g [2]) + e
−j2π2

4 (g [1] + g [3])

G [3] = (g [0]− g [2]) + e
−j2π3

4 (g [1]− g [3])

Looking at the terms in the parentheses, we see that they are the same

as 2 point FFTs!

• consider the terms corresponding to the even input values g [0] and

g [2]. If we perform a 2 point FFT on these even terms, the lower

frequency (DC value) is g [0] + g [2], and the higher frequency is

calculated as g [0]− g [2].

• The same is true for the odd input values g [1] and g [3].
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4 Point FFT

g[0]

g[2]

g[1]

g[3]

W0
4

W1
4

-

-

-

G[0]

G[1]

G[2]

G[3]-

2 point FFT

2 point FFT

Stage 1 Stage 2

Figure 3: A four point FFT divided into two stages. Stage 1 has uses two 2

point FFTs – one 2 point FFT for the even input values and the other 2 point

FFT for the odd input values. Stage 2 performs the remaining operations to

complete the FFT computation.
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Computational Complexity Reduction

We are now starting to build intuition for the reduction in complexity

from O(n2) operations for the dft to O(n log n) operations for the FFT.

The key idea is building the computation through recursion.

• The 4 point FFT uses two 2 point FFTs. This extends to larger FFT

sizes. For example, an 8 point FFT uses two 4 point FFTs, which in

turn each use two 2 point FFTs (for a total of four 2 point FFTs).

An 16 point FFT uses two 8 point FFTs, and so on.

Generalizing the number of 2 Point FFTs needed

How many 2 point FFTs are used in a 32 point FFT? How many are

there in a 64 point FFT? How many 4 point FFTs are required for a 64

point FFT? How about a 128 point FFT? What is the general formula

for 2 point, 4 point, and 8 point FFTs in an N point FFT (where

N > 8)?

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: Fast Fourier Transforms (Pt. 1) FL24::L10 16 / 26



Computational Complexity Reduction

We are now starting to build intuition for the reduction in complexity

from O(n2) operations for the dft to O(n log n) operations for the FFT.

The key idea is building the computation through recursion.

• The 4 point FFT uses two 2 point FFTs. This extends to larger FFT

sizes. For example, an 8 point FFT uses two 4 point FFTs, which in

turn each use two 2 point FFTs (for a total of four 2 point FFTs).

An 16 point FFT uses two 8 point FFTs, and so on.

Generalizing the number of 2 Point FFTs needed

How many 2 point FFTs are used in a 32 point FFT? How many are

there in a 64 point FFT? How many 4 point FFTs are required for a 64

point FFT? How about a 128 point FFT? What is the general formula

for 2 point, 4 point, and 8 point FFTs in an N point FFT (where

N > 8)?

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: Fast Fourier Transforms (Pt. 1) FL24::L10 16 / 26



Generalizing to the N Point FFT



Deriving the Recursive Relationship

Assume that we are calculating an N point FFT. The formula for

calculating the frequency domain values G [] given the input values g [] is:

G [k] =
N−1∑
n=0

g [n] · e
−j2πkn

N for k = 0, . . . ,N − 1 (12)

We can divide this equation into two parts, one that sums the even

components and one that sums the odd components.

G [k] =

N/2−1∑
n=0

g [2n] · e
−j2πk(2n)

N +

N/2−1∑
n=0

g [2n + 1] · e
−j2πk(2n+1)

N (13)

Note that the sums now go to N/2− 1 in both cases which should make

sense since we have divided them into two halves.
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Deriving the Recursive Relationship

We transform Equation 13 to the following:

G [k] =

N/2−1∑
n=0

g [2n] · e
−j2πkn
N/2 +

N/2−1∑
n=0

g [2n + 1] · e
−j2πk(2n)

N · e
−j2πk

N (14)

• 1st summation (even inputs), move 2 to the denominator for N/2.

• 2nd summation (odd inputs) uses the power rule to separate the +1

leaving two complex exponentials.
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Deriving the Recursive Relationship

We can further modify Equation 14 to

G [k] =

N/2−1∑
n=0

g [2n] · e
−j2πkn
N/2 + e

−j2πk
N ·

N/2−1∑
n=0

g [2n + 1] · e
−j2πkn
N/2 (15)

Modify the second summation.

• pull one of the complex exponentials outside of the summation since

it does not depend upon n.

• And we also move the 2 into the denominator as we did before in

the first summation.

• Note that both summations now have the same complex exponential

e
−j2πkn
N/2 .
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Deriving the Recursive Relationship

Finally, we simplify this to

G [k] = Ak +W k
NBk (16)

where Ak and Bk are the first and second summations, respectively. And

recall that W = e−j2π. This completely describes an N point FFT by

separating even and odd terms into two summations.

For reasons that will become clear soon, let us assume that we

• only want to use Equation 16 to calculate the first N/2 terms, i.e.,

G [0] through G [N/2− 1].

• will derive the remaining N/2 terms, i.e., those from G [N/2] to

G [N − 1] using a different equation.
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Deriving the Recursive Relationship

In order to calculate the higher frequencies G [N/2] to G [N − 1], let us

derive the same equations but this time using

k = N/2,N/2 + 1, . . . ,N/2− 1. Thus, we wish to calculate

G [k + N/2] =
N−1∑
n=0

g [n] · e
−j2π(k+N/2)n

N for k = 0, . . . ,N/2− 1 (17)

Using similar algebra from the previous slides, we arrive at:

G [k+N/2] =

N/2−1∑
n=0

g [2n] · e
−j2πkn
N/2 − e

−j2πk
N ·

N/2−1∑
n=0

g [2n+1] · e
−j2πkn
N/2 (18)

Note the similarity to Equation 15. We can put it in terms of Equation

16 as

G [k + N/2] = Ak −W k
NBk (19)
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N Point FFT
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Figure 4: Building an N point FFT from two N/2 point FFTs. The upper N/2

point FFT is performed on the even inputs; the lower N/2 FFT uses the odd

inputs.
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Recursively Building an 8-pt FFT

g[0]

g[1]

g[2]
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4 point FFT
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Legend

Figure 5: An 8 point FFT built recursively. There are two 4 point FFTs, which

each use two 2 point FFTs. The inputs must be reordered to even and odd

elements twice. This results in reordering based upon the bit reversal of the

indices.
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Recursively Building an 8-pt FFT

Also note that the inputs must be reordered before they are feed into the

8 point FFT.

• This is due to the fact that the different N/2 point FFTs take even

and odd inputs.

• The upper four inputs correspond to even inputs and the lower four

inputs have odd indices. However, they are reordered twice. If we

separate the even and odd inputs once we have the even set

{g [0], g [2], g [4], g [6]} and the odd set {g [1], g [3], g [5], g [7]}.

Now let us reorder the even set once again. In the even set g [0] and g [4]

are the even elements, and g [2] and g [6] are the odd elements. Thus

reordering it results in the set {g [0], g [4], g [2], g [6]}. The same can be

done for the initial odd set yielding the reordered set

{g [1], g [5], g [3], g [7]}.

The final reordering is done by swapping values whose indices are in bit

reversed order.
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Recursively Building FFT

Table 1: The index, three bit binary value for that index, bit reversed binary

value, and the resulting bit reversed index.

Index Binary Reversed Reversed

Binary Index

0 000 000 0

1 001 100 4

2 010 010 2

3 011 110 6

4 100 001 1

5 101 101 5

6 110 011 3

7 111 111 7
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Baseline Implementation and

Optimizations (next time)
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