N

Sit

CSE565M: Acceleration of Algorithms
in Reconfigurable Logic

Learn by Doing: DFT (Pt. 3)

Anthony Cabrera
FL24::L09

Washington University in St. Louis

Table of contents

1. Putting it all together (dft.c)

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: DFT (Pt. 3) FL24::L09 1/12

Putting it all together (dft.c)

Recall the formulation for the DFT W

An N point dft can be determined through a N x N matrix multiplied by
a vector of size N, G = S - g where

1 1 1 1 1
1 s s2 sN-1
1 &2 o4 $2(N-1)
S=1; & 6 $3(N-1) (1)
1 sN-1 @N-1) L (N=D(N-D) |

—j2m . . .
and s = e™~ . Thus the samples in frequency domain are derived as

N—1
Gkl =) g[n]s*” for k=0,...,N -1)
n=0

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: DFT (Pt. 3) FL24::L09 2/12

Baseline Implementation Considerations W

Must handle complex numbers

Need to handle data types besides integers, e.g., fioat and fixed point

e How to scale for N-point DFTs for large N

e for example, it's prohibitive to hold entire coefficient matrix in
on-chip memory

Hence, the body of data_100p Now has a latency of 6 cycles for each

iteration and requires 8 multipliers and 7 adders.

We went from a latency of 4 x SIZE x SIZE cycles to 6 cycles

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: DFT (Pt. 3) FL24::L09 3/12

Baseline Implementation

AM Cabrera ™M p,’_reatﬂ%‘Ek@?MQAcES_I@TEti‘UH?ﬁ l}iéorﬁhrﬂs‘ in Reconfigurable Logic :: Learn by Doin,

#include <math.h> //Required for cos and sin functions
typedef double IN-TYPE; // Data type for the input signal
typedef double TEMP_TYPE; // Data type for the temporary variables
#define N 256 // DFT Size

void dft (IN.-TYPE sample_real [N], IN.-TYPE sample_imag[N]) {
int i, j;
TEMP_TYPE w, c, s, w.p;
// Temporary arrays to hold the intermediate frequency domain results
TEMP_TYPE temp._real [N], temp.imag[N];
// Calculate each frequency domain sample iteratively
/] (2 % pi x i)/N
w= (2.0 * 3.1415926535890 / N) = (TEMP_TYPE);
for (i = 0; i <N; i 4=1) {

wWop = i % w;

// Calculate the jth frequency sample sequentially using HLS sin/cos
for (j =0; j<N; j+=1) {

c = cos(j * w);
s =—sin(j * w);
// Multiply the current phasor with the appropriate input sample and keep running sum
temp.real [i] += (sample_real[j] * ¢ — sample.imag[j] * s);
temp_imag[i] += (sample_real[j] * s + sample_imag[j] * c);
}
}
// Perform an inplace DFT, i.e., copy result into the input arrays
// loop interchange optimization
/*
for (i =0; i <N; i +=1)

DFT (Pt. 3) FL24::L09

4/12

Implementation Description

e doubly nested for loop
e inner loop multiplies one row of S matrix with input signal
sequentially
e each element of each row of S is converted from phasor to Cartesian
coordinates every iteration
e performs two multiplications for real and imaginary part and
accumulates the result

e |V iterations for each frequency and N iterations for each point in
the FFT leads to O(N?) operations

e Reuse the input buffers as the output buffers

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: DFT (Pt. 3) FL24::L09 5/12

DFT Unoptimized Architecture

. Run remaining
Compute w Run inner loop Compute W™ iterations Copy Result
g S g Sy

saplef
int to doy 1') e

it 1. dgub
int to donble
doublex
sm/cos
foupiox
ouplex
doubles

sdoubles

N

s
CORDIC @—>®—

temp(0]
templ1]

templ2]

DFT (Pt. 3) FL24:L09 6/ 12

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doin

Can we do better?

e Reduce the precision of the computation
e Process the data in a different order to pipeline with I/ =1
e Exploit symmetry of coefficients

e Use different buffers for input and output

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: DFT (Pt. 3) FL24::L09 7/12

Reduce Precision

For example, change from doubie to float

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: DFT (Pt. 3) FL24::L09 8 /12

Process data in different order

Loop interchange to deal with dependency! This solves the issue of
dealing with recurrence dependency.

Loop Interval = 4 . .J_:_,__,._H_,H_,temp_rea,l[u]
—

i
| ¥ ere—rsro—orsrerertemp real/l]

sampleli|
int to doll 3[9 [— 1) 7} s VE]
doubles rortrsrsra—ors bCIP_TEAl[3

4
5
6
7]

S temp_l'eal

S COS
ouplex
ouplex -
U oot so o reee bOIIP_TEA]

ouble - oo s oo s s temMp_real
samp. e‘m

erorororororore LEIP_TEA]

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: DFT (Pt. 3) FL24::L09 9 /12

Exploit symmetry of coefficients

Recall this figure

G[O] _—>—>—>—>—>—> N _g[O]_
Gl1] — N\ | /=X T gl1]
621 -l =1 =111 |
GB]:—»/T\<—/1\ 9l3]
Gl4] — = o — — gl41
GIS] _>\l/<—\T/ gls]
Gle] — 1 — | =1 —< || |os
s Ll— /1 N = | N\ b

Figure 2: The elements of the S shown as a complex vectors.

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: DFT (Pt. 3) FL24::L09 10 / 12

Use different buffers for input and output W

For example, change from doubie to float

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: DFT (Pt. 3) FL24::L09 11 /12

References

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: DFT (Pt. 3) FL2:

09 12/12

	Putting it all together (dft.c)

