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Matrix Vector Multiplication

Optimizations



Baseline Code

1 #define SIZE 8

2 typedef int BaseType;

3

4 void matrix_vector(BaseType M[SIZE][SIZE], BaseType V_In[SIZE],

BaseType V_Out[SIZE]) {

5 BaseType i, j;

6 data_loop:

7 for (i = 0; i < SIZE; i++) {

8 BaseType sum = 0;

9 dot_product_loop:

10 for (j = 0; j < SIZE; j++) {

11 sum += V_In[j] * M[i][j];

12 }

13 V_Out[i] = sum;

14 }

15 }

Figure 1: Simple code implementing a matrix-vector multiplication.

This relatively simple code has many design choices that can be

performed when mapping to hardware.
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Design Choices

Memory organization is one of the more important decisions. The

question boils down to where do you store the data from your code?

There are a number of options when mapping variables to hardware. The

variable could simply be a set of wires (if its value never needs saved

across a cycle), a register, RAM or FIFO. All of these options provide

tradeoffs between performance and area.

Another major factor is the amount of parallelism that is available within

the code. Purely sequential code has few options for implementation. On

the other hand, code with a significant amount of parallelism has

implementation options that range from purely sequentially to fully

parallel.
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Design Choices

M

V_In * +

V_Out

Figure 2: A possible implementation of matrix-vector multiplication from the

code in Figure 1.

Figure 3: Resulting schedule. Does not consume a lot of area, but the task

latency and task interval are relatively large.
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Pipelining and Parallelism



Exploit Paralellism in dot product loop

The expression sum += V_In[j] * M[i][j]; is executed in each iteration of the

loop. In this case, the sum variable has been completely eliminated and

replaced with multiple intermediate values in the larger expression.

1 #define SIZE 8

2 typedef int BaseType;

3

4 void matrix_vector(BaseType M[SIZE][SIZE], BaseType V_In[SIZE],

5 BaseType V_Out[SIZE]) {

6 BaseType i, j;

7 data_loop:

8 for (i = 0; i < SIZE; i++) {

9 BaseType sum = 0;

10 V_Out[i] = V_In [0] * M[i][0] + V_In [1] * M[i][1] +

11 V_In [2] * M[i][2] + V_In [3] * M[i][3] +

12 V_In [4] * M[i][4] + V_In [5] * M[i][5] +

13 V_In [6] * M[i][6] + V_In [7] * M[i][7];

14 }

15 }

Figure 4: The mat-vec mult example with a manually unrolled inner loop. Can

also achieve this with #pragma HLS unroll
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For comparison

1 #define SIZE 8

2 typedef int BaseType;

3

4 void matrix_vector(BaseType M[SIZE][SIZE], BaseType V_In[SIZE],

BaseType V_Out[SIZE]) {

5 BaseType i, j;

6 data_loop:

7 for (i = 0; i < SIZE; i++) {

8 BaseType sum = 0;

9 dot_product_loop:

10 for (j = 0; j < SIZE; j++) {

11 sum += V_In[j] * M[i][j];

12 }

13 V_Out[i] = sum;

14 }

15 }
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What Does the Benefit Look Like?

Figure 5: A data flow graph of the expression resulting from the unrolled inner

loop from Figure 4.
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What Does the Benefit Look Like?
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What Does the Benefit Look Like?

• If we wish to achieve the minimum task latency for the expression

resulting from the unrolled inner loop, all eight of the multiplications

should be executed in parallel.

• Assuming that the multiplication has a latency of 3 cycles and

addition has a latency of 1 cycle, then all of the V_In[j] * M[i][j]

operations are completed by the third time step.

• The summation of these eight intermediate results using an adder

tree takes log 8 = 3 cycles.

• Hence, the body of data_loop now has a latency of 6 cycles for each

iteration and requires 8 multipliers and 7 adders.

• We went from a latency of 4× SIZE× SIZE cycles to 6 cycles
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What if I can’t afford all those multipliers?

We can reuse multipliers but at the expense of latency, i.e., we run into a

area/latency tradeoff.
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Additional Benefits from Pipelining?

Figure 6: #pragma HLS pipeline II=3
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What if we pipelined the multiplier?

Varying shades of blue represent each mult that needsd to happen in

each inner loop
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Storage Tradeoffs and Array

Partitiioning



Storage Knobs pt 1

1 #define SIZE 8

2 typedef int BaseType;

3

4 void matrix_vector(BaseType M[SIZE][SIZE], BaseType V_In[SIZE],

BaseType V_Out[SIZE]) {

5 #pragma HLS array_partition variable=M dim=2 complete

6 #pragma HLS array_partition variable=V_In complete

7 BaseType i, j;

8 data_loop:

9 for (i = 0; i < SIZE; i++) {

10 #pragma HLS pipeline II=1

11 BaseType sum = 0;

12 dot_product_loop:

13 for (j = 0; j < SIZE; j++) {

14 sum += V_In[j] * M[i][j];

15 }

16 V_Out[i] = sum;

17 }

18 }

Figure 7: Matrix-vector multiplication with a particular choice of array

partitioning and pipelining.
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Storage Knobs pt 1
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Storage Knobs pt 2

1 #define SIZE 8

2 typedef int BaseType;

3

4 void matrix_vector(BaseType M[SIZE][SIZE], BaseType V_In[SIZE],

BaseType V_Out[SIZE]) {

5 #pragma HLS array_partition variable=M dim=2 cyclic factor =2

6 #pragma HLS array_partition variable=V_In cyclic factor =2

7 BaseType i, j;

8 data_loop:

9 for (i = 0; i < SIZE; i++) {

10 BaseType sum = 0;

11 dot_product_loop:

12 for (j = 0; j < SIZE; j+=2) {

13 #pragma HLS pipeline II=1

14 sum += V_In[j] * M[i][j];

15 sum += V_In[j+1] * M[i][j+1];

16 }

17 V_Out[i] = sum;

18 }

19 }

Figure 8: The inner loop of matrix-vector multiply manually unrolled by a

factor of two. What do the arrays look like?
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Putting it all together (dft.c)
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