FL24 CSE565M - Lab 2

Instructor: Dr. Anthony Cabrera

Due Date: November 1, 2024

тос

- Initial Setup for Environment
- Overview of Starter Code
- Baseline Code
 - Software Emulation
 - Hardware Emulation
- "Optimize" the Baseline
 - · Perform any optimization on the baseline
 - Setting Up a VNC Server
 - Fine-Grained Kernel Information with the Vitis GUI
 - C Simulation
 - C Synthesis
 - Implementaiton
- Running on the Alveo U280
 - Vitis Analyzer

Initial Setup for Environment

- 1. SSH into NERC build server
- 2. Source the scripts for environment:

```
source /tools/Xilinx/Vitis/2023.1/settings64.sh
source /opt/xilinx/xrt/setup.sh
```

3. Clone a fresh copy of this repository

Overview of Starter Code

Here's an overview of the directory

- The *.dat files contain the input and expected data.
- The *.mk files and the Makefile contain the build infra
- The xrt.ini file contains a runtime configuration

Baseline Code

1. Look at fir11_host.cpp . Describe what this code does in a few sentences.

♀ Tip

In part, the print statements in the code can help you here.

2. Populate fir11_kernel.cpp with a baseline version of an 11 point fir filter.

♀ Tip

You may use the implementation from Studio 1

Software Emulation

1. Build and run the software emulation version of your baseline.

```
make all TARGET=sw_emu
PLATFORM=/opt/xilinx/platforms/xilinx_u280_gen3x16_xdma_1_202211_1/xilinx
_u280_gen3x16_xdma_1_202211_1.xpfm
./fir11_xrt -x
build_dir.sw_emu.xilinx_u280_gen3x16_xdma_1_202211_1/fir11.xclbin
```

2. Verify that the test passes and take a screenshot of the output

Hardware Emulation

Repeate the steps from Software Emulation but replace instances of sw_emu with hw_emu.

Specifically, build the hw_emu version and verify the output.

At this point, you'll have a baseline implementation of an 11-tap filter running through everything but the actual hardware implementation.

"Optimize" the Baseline

Perform any optimization on the baseline

Recall from previous lectures that we took a look at a variety of different optimizations for the FIR filter in class.

Pick any one of these optimizations, implement them, and repeat the software and hardware steps for your optimized kernel.

Setting Up a VNC Server

Before we proceed, we're going to need access a GUI interface to the NERC build server.

Recall the instructions from here and/or here to use a VNC server for GUI access to the build server.

For those who used vncserver for a GUI interface to the build server in Lab 0, check to see if your vncserver instance is still running using:

vncserver -list

If the server is still up , you should see something like this

```
cabrera@fpga-tools:~$ vncserver -list
TigerVNC server sessions:
X DISPLAY # RFB PORT # PROCESS ID
:3 5903 1541908
```

If the output says anything about a stale handle, remove the vncserver instance using

```
vncserver -kill :<X Display #>
```

vncserver -kill :3

Then access the server using the previously reference instructions.

Fine-Grained Kernel Information with the Vitis GUI

The following exercise is to familiarize yourself with some of the Vitis tooling you can use to get a better understanding of your kernel(s).

While in the GUI desktop for the build server, open up a terminal and source the commands from earlier.

Issue the command

vitis -new -w cse565m_workspace

After a minute or so, you should be greeted with the Vitis GUI environment.

Next, create an HLS	Component for your	Optimized FIR Kernel
---------------------	--------------------	-----------------------------

Activi	ities		Vitis Unifi	ed IDE	•				
Л	File	Edit	Selection	View	Go	Terminal	Viti	s Help	
\bigcirc	N	lew File Iew Fol	e der			Ctrl+N		🞝 Welcome ×	
ρ	N	lew Co	mponent				>	HLS	۰ ب
, o	C)pen Fi	le			Ctrl+O		Al Engine Application	
6	C)pen W	orkspace			Ctrl+Alt+W		Platform	
\$)pen Re	ecent Works	pace		Ctrl+Alt+R		System Proj	ect
æ	S	ave				Ctrl+S		From Examp	oles
ô	s 	a ve All ave As				Ctrl+Alt+S Ctrl+Shift+S]	ස <u>Example</u>	<u>es</u>
\sim	~ A	uto Sa	ve						
	P	refere	nces				>		
	с с	lose Ec	litor orkspace			Ctrl+W		Recent W	orkspaces/
	c	lose W	indow			Ctrl+Q		workspace Modified 4 (days ago

For component name, use fir11_hls and click Next .

For configuration file, make sure the Empty File radio button is selected and click Next.

For source files, make sure you add fir11_kernel.{h,cpp} and set the top function to fir . For test bench files, include the input, expected output, and fir11_test.cpp testbench file. Click Next .

Create HLS Component - Empty HLS Component			×
Name and Location > Configuration File > Source Files > Part > Settings >	Summary		
Add Source Files Specify design, test bench files and flags for your component. You can also skip this step r	now and add sources later		
DESIGN FILES			C ₊
FILE(S)	CFLAGS	CSIMFLAGS	
Flags common to all files			
/home/cabrera/Data/2_Areas/Teaching/Vitis_Accel_Examples/fir11/src/fir11_kernel.cpp			
Top Function fir	Browse		
TEST BENCH FILES			C₊ E∓
FILE/FOLDER(S)		CFLAGS	
/home/cabrera/Data/2_Areas/Teaching/Vitis_Accel_Examples/fir11/input.dat			
/home/cabrera/Data/2_Areas/Teaching/Vitis_Accel_Examples/fir11/out.gold.fir11.dat			
/home/cabrera/Data/2_Areas/Teaching/Vitis_Accel_Examples/fir11/src/fir11_test.cpp			
Cancel			Back Next

For the Part settings, click the Platform radio button and select the u280 platform option.

Create HLS Component - Empty HLS Component					
Name and Location > Configuration File > Source Files > Part > Settings > Summary					
Select Part Specify a board, device, or platform you are compiling your component for Part ① Platform					
Q + ∀ ⊗					
NAME	BOARD	FLOW	VENDOR	РАТН	
✓ base_platforms (4)				se_platforms	
xilinx_vck190_base_202310_1	xd	Embedded Accel	xilinx.com	vck190_base_202310_1/xilinx_vck190_base_202310_1.xpfm	
xilinx_vmk180_base_202310_1	xd	Embedded Accel	xilinx.com	vmk180_base_202310_1/xilinx_vmk180_base_202310_1.xpfm	
xilinx_vck190_base_dfx_202310_1	xd	Embedded Accel	xilinx.com	ase_dfx_202310_1/xilinx_vck190_base_dfx_202310_1.xpfm	
xilinx_vek280_es1_base_202310_1	xd	Embedded Accel	xilinx.com	s1_base_202310_1/xilinx_vek280_es1_base_202310_1.xpfm	
\sim platforms (3)				/opt/xilinx/platforms	
xilinx_u280_gen3x16_xdma_1_202211_1	u280	Data Center	xilinx	a_1_202211_1/xilinx_u280_gen3x16_xdma_1_202211_1.xpfm	
xilinx_vck5000_gen4x8_qdma_2_202220_1	vck5000	Data Center	xilinx	2_202220_1/xilinx_vck5000_gen4x8_qdma_2_202220_1.xpfm	
xilinx_vck5000_gen4x8_xdma_2_202210_1	vck5000	Data Center	xilinx	2_202210_1/xilinx_vck5000_gen4x8_xdma_2_202210_1.xpfm	
Cancel				Back	

In the Settings window, make sure the Vitis Kernel Flow radio button is selected and click Next .

Review the summary and click Finish.

C Simulation

To simulate the kernel using the testbench code, click the Run option under C Simulation in the pane in the bottom left-hand corner.

Verify that the simulation was successful and take a screenshot of the resulting terminal.

C Synthesis

Run the C synthesis of this kernel by clicking the Run option under C synthesis.

Verify that the kernel synthesizes with no errors. Then, take a look at the reports generated.

Take a screenshot of the report you find most interesting and describe it.

Note that each report has many things you can interact with, e.g., the synthesis option has the following reports:

Summary to Synancus to Function can orapi	seredule tremer of
Summary Synthesis Report - fir	
General Information Estimated Quality of Results Performance Pragma HW Interfaces SW I/O Information	Timing Estimate
Bind Op Report Bind Storage Report	 A Sector Accords MODULES & LOOPS ✓ ● fir (1) > ● fir_Pipeline_Shift_Accum_Loop

Implementaiton

Finally, click the Run option under implementation.

Take a look at the reports and summarize what you observe.

Running on the Alveo U280

The next part can be done outside of the GUI and instead in a terminal window.

Repeate the steps from Software Emulation but replace instances of sw_emu with hw.

਼ Tip

Recall the instructions from Lab 1 for building the hardware. It will probably take about ~2 hours, so tmux is your friend here.

Allocate an FPGA instance.

You'll need to copy over the host binary -- fir11_xrt -- the fir11.xclbin from the hw build directory, and the xrt.ini file over to the FPGA node.

Run the binary with

```
$ ./fir11_xrt -x fir11.xclbin
```

Verify the kernel acts as expected and take a screenshot of the results.

Vitis Analyzer

The last thing to do is to take a look at the xrt.run_summary file generated after running the kernel. We will want to copy that back over to the build server. I will initiate scp from the build server.

For me, that looks something like

```
scp -i ~/.ssh/carondelet_rsa
cabrera@pc171.cloudlab.umass.edu:/users/cabrera/xrt.run_summary
```

Back in the GUI for the build server, issue

```
vitis_analyzer xrt.run_summary
```

Poke around at the different reports in the right-hand pane.

Click on and take a screenshot of the output of the Timeline Trace summary.

~	ſ	Run - xrt.run_summary - HARDWARE EMULATION
	•	Summary
	•	Timeline Trace (Simulation Time)
		Waveform
		Run Guidance
		Profile Summary

Describe what you see in the Timeline Trace.