
FL24 CSE565M - Lab 2
Instructor: Dr. Anthony Cabrera

Due Date: November 1, 2024

TOC

Initial Setup for Environment

Overview of Starter Code

Baseline Code
Software Emulation

Hardware Emulation

"Optimize" the Baseline
Perform any optimization on the baseline

Setting Up a VNC Server

Fine-Grained Kernel Information with the Vitis GUI
C Simulation

C Synthesis

Implementaiton
Running on the Alveo U280

Vitis Analyzer

Initial Setup for Environment

1. SSH into NERC build server

2. Source the scripts for environment:

source /tools/Xilinx/Vitis/2023.1/settings64.sh
source /opt/xilinx/xrt/setup.sh

3. Clone a fresh copy of this repository

Overview of Starter Code

Here's an overview of the directory

https://github.com/cabreraam/Vitis_Accel_Examples

fir11
├── input.dat
├── Makefile
├── makefile_us_alveo.mk
├── out.gold.fir11.dat
├── src
│ ├── fir11_host.cpp
│ ├── fir11_kernel.cpp
│ ├── fir11_kernel.h
│ ├── fir11_kernel_solution.cpp
│ └── fir11_test.cpp
├── utils.mk
└── xrt.ini

The *.dat files contain the input and expected data.

The *.mk files and the Makefile contain the build infra

The xrt.ini file contains a runtime configuration

Baseline Code

1. Look at fir11_host.cpp . Describe what this code does in a few sentences.

Tip

In part, the print statements in the code can help you here.

2. Populate fir11_kernel.cpp with a baseline version of an 11 point fir filter.

Tip

You may use the implementation from Studio 1

Software Emulation

1. Build and run the software emulation version of your baseline.

make all TARGET=sw_emu
PLATFORM=/opt/xilinx/platforms/xilinx_u280_gen3x16_xdma_1_202211_1/xilinx
_u280_gen3x16_xdma_1_202211_1.xpfm
./fir11_xrt -x
build_dir.sw_emu.xilinx_u280_gen3x16_xdma_1_202211_1/fir11.xclbin

2. Verify that the test passes and take a screenshot of the output

Hardware Emulation

https://cabreraam.github.io/cse565m/assets/2024_10_10-studio1.pdf

Repeate the steps from Software Emulation but replace instances of sw_emu with hw_emu .

Specifically, build the hw_emu version and verify the output.

At this point, you'll have a baseline implementation of an 11-tap filter running through
everything but the actual hardware implementation.

"Optimize" the Baseline

Perform any optimization on the baseline

Recall from previous lectures that we took a look at a variety of different optimizations for the
FIR filter in class.

Pick any one of these optimizations, implement them, and repeat the software and hardware
steps for your optimized kernel.

Setting Up a VNC Server

Before we proceed, we're going to need access a GUI interface to the NERC build server.

Recall the instructions from here and/or here to use a VNC server for GUI access to the build
server.

For those who used vncserver for a GUI interface to the build server in Lab 0, check to see
if your vncserver instance is still running using:

vncserver -list

If the server is still up , you should see something like this

cabrera@fpga-tools:~$ vncserver -list

TigerVNC server sessions:

X DISPLAY # RFB PORT # PROCESS ID
:3 5903 1541908

If the output says anything about a stale handle, remove the vncserver instance using

vncserver -kill :<X Display #>

e.g.,

https://cabreraam.github.io/cse565m/useful/ssh_into_build_server#for-gui-environment
https://github.com/cabreraam/OCT-Tutorials/blob/master/nercsetup/nerc-vm-guide.md
https://cabreraam.github.io/cse565m/useful/ssh_into_build_server#for-gui-environment

vncserver -kill :3

Then access the server using the previously reference instructions.

Fine-Grained Kernel Information with the Vitis GUI

The following exercise is to familiarize yourself with some of the Vitis tooling you can use to
get a better understanding of your kernel(s).

While in the GUI desktop for the build server, open up a terminal and source the commands
from earlier.

Issue the command

vitis -new -w cse565m_workspace

After a minute or so, you should be greeted with the Vitis GUI environment.

Next, create an HLS Component for your Optimized FIR Kernel

For component name, use fir11_hls and click Next .

https://cabreraam.github.io/cse565m/useful/ssh_into_build_server#for-gui-environment

For configuration file, make sure the Empty File radio button is selected and click Next .

For source files, make sure you add fir11_kernel.{h,cpp} and set the top function to
fir . For test bench files, include the input, expected output, and fir11_test.cpp

testbench file. Click Next .

For the Part settings, click the Platform radio button and select the u280 platform option.

In the Settings window, make sure the Vitis Kernel Flow radio button is selected and click
Next .

Review the summary and click Finish .

C Simulation

To simulate the kernel using the testbench code, click the Run option under C Simulation
in the pane in the bottom left-hand corner.

Verify that the simulation was successful and take a screenshot of the resulting terminal.

C Synthesis

Run the C synthesis of this kernel by clicking the Run option under C synthesis.

Verify that the kernel synthesizes with no errors. Then, take a look at the reports generated.

Take a screenshot of the report you find most interesting and describe it.

Note that each report has many things you can interact with, e.g., the synthesis option has
the following reports:

Implementaiton

Finally, click the Run option under implementation.

Take a look at the reports and summarize what you observe.

Running on the Alveo U280

The next part can be done outside of the GUI and instead in a terminal window.

Repeate the steps from Software Emulation but replace instances of sw_emu with hw .

Tip

Recall the instructions from Lab 1 for building the hardware. It will probably take about
~2 hours, so tmux is your friend here.

Allocate an FPGA instance.

You'll need to copy over the host binary -- fir11_xrt -- the fir11.xclbin from the hw
build directory, and the xrt.ini file over to the FPGA node.

Run the binary with

$./fir11_xrt -x fir11.xclbin

Verify the kernel acts as expected and take a screenshot of the results.

Vitis Analyzer

The last thing to do is to take a look at the xrt.run_summary file generated after running the
kernel. We will want to copy that back over to the build server. I will initiate scp from the
build server.

For me, that looks something like

scp -i ~/.ssh/carondelet_rsa
cabrera@pc171.cloudlab.umass.edu:/users/cabrera/xrt.run_summary

Back in the GUI for the build server, issue

vitis_analyzer xrt.run_summary

Poke around at the different reports in the right-hand pane.

Click on and take a screenshot of the output of the Timeline Trace summary.

https://cabreraam.github.io/cse565m/assets/2024_09_17-lab1.pdf

Describe what you see in the Timeline Trace.

