
CSE565M: Acceleration of Algorithms

in Reconfigurable Logic

Learn by Doing: DFT (Pt. 1)

Anthony Cabrera

FL24::L07

Washington University in St. Louis

Table of contents

1. Overview

2. Fourier Series

3. DFT Background

4. Matrix Vector Multiplication Optimizations

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: DFT (Pt. 1) FL24::L07 1 / 16

Overview

Core Idea

An algorithm that changes a discrete signal in the time domain to the

same signal in the frequency domain.

• By describing the signal as the sum of sinusoids, we can more easily

compute some functions on the signal. As such, it plays an

important role in many domains

• image processing

• wireless communications

This lecture will contain mostly some of the mathematical foundations

for DFTs with some thoughts about efficient HW implementations.

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: DFT (Pt. 1) FL24::L07 2 / 16

Fourier Series

Mathematical Formulation

The Fourier series proves an alternative way to look at a real valued,

continuous, periodic signal where the signal runs from [−π, π].

The Fourier series represents any continuous, periodic signal over a

period of 2π can be represented by a sum of cosines and sines with a

period of 2π.

f (t) ∼ a0
2 + a1 cos(t) + a2 cos(2t) + a3 cos(3t) + . . .

+b1 sin(t) + b2 sin(2t) + b3 sin(3t) + . . .

∼ a0
2 +

∞∑
n=1

(an cos(nt) + bn sin(nt))

(1)

where the coefficients a0, a1, . . . and b1, b2, . . . are computed as

a0 = 1
π

∫ π

−π
f (t)dt

an = 1
π

∫ π

−π
f (t) cos(nt)dt

bn = 1
π

∫ π

−π
f (t) sin(nt)dt

(2)

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: DFT (Pt. 1) FL24::L07 3 / 16

Mathematical Formulation (cont.)

• The coefficients a0, a1, a2, . . . , b1, b2, . . . in Equation 2 are called the

Fourier coefficients.

• The coefficient a0 is often called the direct current (DC) term, the

n = 1 frequency is called the fundamental, while the other

frequencies (n ≥ 2) are called higher harmonics.

• The function f , and the cos() and sin() functions all have a period

of 2π

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: DFT (Pt. 1) FL24::L07 4 / 16

Mathematical Formulation (cont.)

• The coefficients a0, a1, a2, . . . , b1, b2, . . . in Equation 2 are called the

Fourier coefficients.

• The coefficient a0 is often called the direct current (DC) term, the

n = 1 frequency is called the fundamental, while the other

frequencies (n ≥ 2) are called higher harmonics.

• The function f , and the cos() and sin() functions all have a period

of 2π

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: DFT (Pt. 1) FL24::L07 5 / 16

Mathematical Formulation (cont.)

Representing other functions not periodic on π requires a change in

variables. Assume a function is periodic on [−L, L] rather than [−π, π].

Let

t ≡ πt ′

L
(3)

and

dt =
πdt ′

L
(4)

which is a simple linear translation. Solving for t ′ and substituting

t ′ = Lt
π into Equation 1 gives

f (t ′) =
a0
2

+
∞∑
n=1

(an cos(
nπt ′

L
) + bn sin(

nπt ′

L
)) (5)

Solving for the a and b coefficients is similar:

a0 = 1
L

∫ L

−L
f (t ′)dt ′

an = 1
L

∫ L

−L
f (t ′) cos(nπt

′

L)dt ′

bn = 1
L

∫ L

−L
f (t ′) sin(nπt

′

L)dt ′
(6)

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: DFT (Pt. 1) FL24::L07 6 / 16

Mathematical Formulation (cont.)

We can use Euler’s formula e jnt = cos(nt) + j sin(nt) to give a more

concise formulation

f (t) =
∞∑

n=−∞
cne

jnt . (7)

In this case, the Fourier coefficients cn are a complex exponential given by

cn =
1

2π

∫ π

−π

f (t)e−jntdt (8)

which assumes that f (t) is a periodic function with a period of 2π, i.e.,

this equation is equivalent to Equation 1.

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: DFT (Pt. 1) FL24::L07 7 / 16

DFT Background

Discrete Fourier Transform (DFT)

• The Discrete Fourier Transform requires discrete periodic signals.

• The DFT converts a finite number of equally spaced samples into a

finite number of complex sinusoids. In other words, it converts a

sampled function from one domain (most often the time domain) to

the frequency domain.

• The frequencies of the complex sinusoids are integer multiples of the

fundamental frequency which is defined as the frequency related to

the sampling period of the input function.

• Perhaps the most important consequence of the discrete and

periodic signal is that it can be represented by a finite set of

numbers. Thus, a digital system can be used to implement the dft.

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: DFT (Pt. 1) FL24::L07 8 / 16

DFT (cont)

Real G[]: Cosine Amplitudes

Imaginary G[]: Sine Amplitudes

0

0

N/2

N/2

0 N-1

g[]

Time Domain Frequency Domain

Figure 1: A real valued discrete function g [] in the time domain with N points

has a frequency domain representation with N/2 + 1 samples. Each of these

frequency domain samples has one cosine and one sine amplitude value.

Collectively these two amplitude values can be represented by a complex

number with the cosine amplitude representing the real part and the sine

amplitude the imaginary part.

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: DFT (Pt. 1) FL24::L07 9 / 16

DFT (cont)

An N point dft can be determined through a N × N matrix multiplied by

a vector of size N, G = S · g where

S =



1 1 1 · · · 1

1 s s2 · · · sN−1

1 s2 s4 · · · s2(N−1)

1 s3 s6 · · · s3(N−1)

...
...

...
. . .

...

1 sN−1 s2(N−1) · · · s(N−1)(N−1)


(9)

and s = e
−j2π

N . Thus the samples in frequency domain are derived as

G [k] =
N−1∑
n=0

g [n]skn for k = 0, . . . ,N − 1 (10)

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: DFT (Pt. 1) FL24::L07 10 / 16

Visualize with an 8-point DFT

G[0]
G[1]

G[2]

G[6]

G[3]
G[4]
G[5]

G[7]

=

g[0]
g[1]

g[2]

g[6]

g[3]
g[4]
g[5]

g[7]

Figure 2: The elements of the S shown as a complex vectors.

By taking advantage of symmetry, we can just focus on the first N/2

frequency domain values.

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: DFT (Pt. 1) FL24::L07 11 / 16

Visualize with an 8-point DFT (cont)

Figure 2 provides a visualization of the dft coefficients for an 8 point dft

operation. The eight frequency domain samples are derived by

multiplying the 8 time domain samples with the corresponding rows of

the S matrix. Row 0 of the S matrix corresponds to the DC component

which is proportional to the average of the time domain samples.

Multiplying Row 1 of the S matrix with g provides the cosine and sine

amplitudes values for when there is one rotation around the unit circle.

Since this is an 8 point dft, this means that each phasor is offset by 45◦.

Performing eight 45◦ rotations does one full rotation around the unit

circle. Row 2 is similar except it performs two complete rotations around

the unit circle, i.e., each individual rotation is 90◦. This corresponds to a

higher frequency. Row 3 does three complete rotations; Row 4 four

rotations and so on. Each of these row times column multiplications

gives the appropriate frequency domain sample.

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: DFT (Pt. 1) FL24::L07 12 / 16

Matrix Vector Multiplication

Optimizations

Baseline Code

1 #define SIZE 8

2 typedef int BaseType;

3

4 void matrix_vector(BaseType M[SIZE][SIZE], BaseType V_In[SIZE],

BaseType V_Out[SIZE]) {

5 BaseType i, j;

6 data_loop:

7 for (i = 0; i < SIZE; i++) {

8 BaseType sum = 0;

9 dot_product_loop:

10 for (j = 0; j < SIZE; j++) {

11 sum += V_In[j] * M[i][j];

12 }

13 V_Out[i] = sum;

14 }

15 }

Figure 3: Simple code implementing a matrix-vector multiplication.

This relatively simple code has many design choices that can be

performed when mapping to hardware.
AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: DFT (Pt. 1) FL24::L07 13 / 16

Design Choices

Memory organization is one of the more important decisions. The

question boils down to where do you store the data from your code?

There are a number of options when mapping variables to hardware. The

variable could simply be a set of wires (if its value never needs saved

across a cycle), a register, RAM or FIFO. All of these options provide

tradeoffs between performance and area.

Another major factor is the amount of parallelism that is available within

the code. Purely sequential code has few options for implementation. On

the other hand, code with a significant amount of parallelism has

implementation options that range from purely sequentially to fully

parallel.

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: DFT (Pt. 1) FL24::L07 14 / 16

Design Choices

M

V_In * +

V_Out

Figure 4: A possible implementation of matrix-vector multiplication from the

code in Figure 3.

Figure 5: Resulting schedule. Does not consume a lot of area, but the task

latency and task interval are relatively large.

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: DFT (Pt. 1) FL24::L07 15 / 16

References i

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: DFT (Pt. 1) FL24::L07 16 / 16

	Overview
	Fourier Series
	DFT Background
	Matrix Vector Multiplication Optimizations

