
CSE565M: Acceleration of Algorithms

in Reconfigurable Logic

Learn by Doing: CORDIC (Pt. 2)

Anthony Cabrera

FL24::L06

Washington University in St. Louis

Table of contents

1. Cartesian to Polar Conversion

2. Number Representation

3. CORDIC Optimizations

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: CORDIC (Pt. 2) FL24::L06 1 / 14

Recall the CORDIC Algorithm

1

2

3

4

5

1) 0°+45°=45°

2) 45°+26.565°=71.565°
3) 71.565°-14.036°=57.529°

4) 57.529°+7.125°=64.654°
5) 64.64°-3.576°=61.078°

Figure 1: Calculating cos 60◦ and sin 60◦ using the CORDIC algorithm. Five

rotations are performed using incrementally larger i values (0,1,2,3,4). The

result is a vector with an angle of 61.078◦. The corresponding x and y values

of that vector give the approximate desired cosine and sine values.

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: CORDIC (Pt. 2) FL24::L06 2 / 14

Sequential Version of CORDIC

1 #i n c l u d e ” c o r d i c . h”

2 // The c o r d i c p h a s e a r r a y ho l d s the ang l e f o r the c u r r e n t r o t a t i o n

3 // c o r d i c p h a s e [0] =˜ 0 .785 , c o r d i c p h a s e [1] =˜ 0 .463 , e t c .

4 vo i d c o r d i c (THETA TYPE theta , COS SIN TYPE &s , COS SIN TYPE &c) {
5 // Set the i n i t i a l v e c t o r t ha t we w i l l r o t a t e

6 COS SIN TYPE c u r r e n t c o s = 0 . 60735 ; // s t a r t a t x = 1 , y = 0 , ph i = 0

7 COS SIN TYPE c u r r e n t s i n = 0 . 0 ;

8

9 COS SIN TYPE f a c t o r = 1 . 0 ;

10 // This l oop i t e r a t i v e l y r o t a t e s the i n i t i a l v e c t o r to f i n d the

11 // s i n e and c o s i n e v a l u e s c o r r e s p ond i n g to the i npu t t h e t a ang l e

12 f o r (i n t j = 0 ; j < NUM ITERATIONS ; j++) {
13 // Determine i f we a r e r o t a t i n g by a p o s i t i v e or n e g a t i v e ang l e

14 i n t s igma = (th e t a < 0) ? −1 : 1 ;

15

16 // Mu l t i p l y p r e v i o u s i t e r a t i o n by 2ˆ(− j)

17 COS SIN TYPE c o s s h i f t = c u r r e n t c o s ∗ s igma ∗ f a c t o r ;

18 COS SIN TYPE s i n s h i f t = c u r r e n t s i n ∗ s igma ∗ f a c t o r ;

19

20 // Perform the r o t a t i o n

21 c u r r e n t c o s = c u r r e n t c o s − s i n s h i f t ;

22 c u r r e n t s i n = c u r r e n t s i n + c o s s h i f t ;

23

24 // Determine the new the t a

25 th e t a = the t a − s igma ∗ c o r d i c p h a s e [j] ;

26

27 f a c t o r = f a c t o r / 2 ;

28 }
29 // Set the f i n a l s i n e and c o s i n e v a l u e s

30 s = c u r r e n t s i n ;

31 c = c u r r e n t c o s ;

32 }

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: CORDIC (Pt. 2) FL24::L06 3 / 14

CORDIC :: Exercise 4

Additonal rotations

Is it possible to get worse accuracy by performing more rotations?

Provide an example when this would occur.

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: CORDIC (Pt. 2) FL24::L06 4 / 14

Cartesian to Polar Conversion

Cartesian to Polar Coordinates

With some modifications, the CORDIC can perform other functions. For

example, it can convert between Cartesian and polar representations

(x , y)←→ (r , θ)

Recall the relationship between these coordinates:

x = r cos θ

y = r sin θ

r =
√
x2 + y2

θ = atan2(y , x)

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: CORDIC (Pt. 2) FL24::L06 5 / 14

Using CORDIC for Cartesian2Polar

First, rotate the vector into quandrant I or IV

Q

I

90°

b)Q

I
90°

a)

90°

Q

I
90°

c) Q

I

d)

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: CORDIC (Pt. 2) FL24::L06 6 / 14

Using CORDIC for Cartesian2Polar

Subsequent rotations will allow the vector to reach a final angle of 0◦. At

this point, the radial value of the initial vector is the x value of the final

rotated vector and the phase of the initial vector is the summation of all

the angles that the CORDIC performed.

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: CORDIC (Pt. 2) FL24::L06 7 / 14

Number Representation

Representing Arbitrary Precision Integers in C/C++

• standard types like int and long are implementation defined

• In the C99 standard, the inttypes.h header introduced the types

• int8_t

• int16_t

• int32_t

• int64_t

• uint64_t

• These can stil be awkward to use. Gets worse for fixed-point math

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: CORDIC (Pt. 2) FL24::L06 8 / 14

Representing Arbitrary Precision Integers in HLS

For these reasons, it’s usually preferable to use C++ and the HLS

template classes ap_int<>, ap_uint<>, ap_fixed<>, and ap_ufixed<> to represent

arbitrary precision numbers.

• The ap_int<> and ap_uint<> template classes require a single integer

template parameter that defines their width.

• Only if the result is assigned to a narrower bitwidth does overflow or

underflow occur.

1 #include "ap_int.h"

2 ap_uint <15> a =0x4000;

3 ap_uint <15> b = 0x4000;

4 // p is assigned to 0x10000000.

5 ap_uint <30> p = a*b;

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: CORDIC (Pt. 2) FL24::L06 9 / 14

Representing Arbitrary Precision Integers in HLS

The ap_fixed<> and ap_ufixed<> template classes are similar, except that

they require two integer template arguments that define the overall width

(the total number of bits) and the number of integer bits.

1 #include "ap_fixed.h"

2 // 4.0 represented with 12 integer bits.

3 ap_ufixed <15,12> a = 4.0;

4 // 4.0 represented with 12 integer bits.

5 ap_ufixed <15,12> b = 4.0;

6 // p is assigned to 16.0 represented with 12 integer bits

7 ap_ufixed <18,12> p = a*b;

8

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: CORDIC (Pt. 2) FL24::L06 10 / 14

Floating Point

Floating point numbers provide a large amount of precision, but this

comes at a cost;

• it requires significant amount of computation which in turn

translates to a large amount of resource usage and many cycles of

latency.

• Thus, floating point numbers should be avoided unless absolutely

necessary as dictated by the accuracy requirements application.

• Unfortunately, this is often a non-trivial task and there are not many

good standard methods to automatically perform this translation.

This is partially due to the fact that moving to fixed point will

reduce the accuracy of the application and this tradeoff is best left to

the designer.

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: CORDIC (Pt. 2) FL24::L06 11 / 14

CORDIC Optimizations

Updated CORDIC Code Listing

1 #include "cordic.h"

2 void cordic(THETA_TYPE theta , COS_SIN_TYPE &s, COS_SIN_TYPE &c) {

3 COS_SIN_TYPE current_cos = 0.60735;

4 COS_SIN_TYPE current_sin = 0.0;

5 for (int j = 0; j < NUM_ITERATIONS; j++) {

6 // Multiply previous iteration by 2^(-j).

7 COS_SIN_TYPE cos_shift = current_cos >> j;

8 COS_SIN_TYPE sin_shift = current_sin >> j;

9 if (theta >= 0) {

10 // Perform the rotation

11 current_cos = current_cos - sin_shift;

12 current_sin = current_sin + cos_shift;

13

14 theta = theta - cordic_phase[j];

15 } else {

16 // Perform the rotation

17 current_cos = current_cos + sin_shift;

18 current_sin = current_sin - cos_shift;

19

20 theta = theta + cordic_phase[j];

21 }

22 }

23 s = current_sin;

24 c = current_cos;

25 }

Figure 2: Fixed-point CORDIC code implementing the sine and cosine of a

given angle.

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: CORDIC (Pt. 2) FL24::L06 12 / 14

CORDIC :: Exercise 5

Varying the Data Type

How do you think the area, throughput, and precision of the sine and

cosine results change as you vary the data type? Do you expect to see a

significant difference when THETA_TYPE and COS_SIN_TYPE are floating point

types vs. ap_fixed<> types? What about using the code?

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: CORDIC (Pt. 2) FL24::L06 13 / 14

References i

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: CORDIC (Pt. 2) FL24::L06 14 / 14

	Cartesian to Polar Conversion
	Number Representation
	CORDIC Optimizations

