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Overview



What is CORDIC

CORDIC stands for Coordinate Rotation DIgital Computer

• digit-by-digit algorithm that produces one output digit per iteration

• fine-tune the algorithm based on desired accuracy

• performs simpule computations using only addition, substraction, bit

shifting, and table lookups, which are efficient to implement in

hardware. (Multiply ops on just the FPGA fabric is expensive)

• most of the computation is performed within a single for loop
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Learning Goal

Understand the CORDIC algorithm well enough to create an optimized

CORDIC compute core using HLS

The major HLS optimization we will highlight with CORDIC is choosing

the correct number representation for the variables

• tradeoff between accuracy, performance, and resource utilization of

the design
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The Tradeoff

Larger numbers provide more precision at the cost of increased resource

usage (more FFs and logic blocks).
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Background



Core Idea

Efficiently perform a set of vector rotations in a 2D plane

• With these rotations, we can implement a variety of fundamental

ops

• trigonometric

• hyperbolic

• logarithmic
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Cordic Algo for Sine/Cosine Overview

How to use CORDIC to compute sine and cosine for a given input angle,

θ

• perform a series of vector rotations in order to reach the target angle

theta

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Learn by Doing: CORDIC (Pt. 1) FL24::L05 6 / 28



Cordic Algo for Sine/Cosine Overview (cont)

Target Angle φ

1

2

3

4

x = cos φ

y = sin φ

Figure 1: Using the CORDIC to calculate the functions sinϕ and cosϕ.

CORDIC starts at the x-axis with a corresponding 0◦ angle. Performs four

iterative +/- rotations in increasingly smaller rotation angle to reach target

angle ϕ. The corresponding x and y values of the final vector correspond to

cosϕ and sinϕ (respectively).
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Cordic Algo for Sine/Cosine Overview (cont)

Algorithm at a High Level:

• Perform an iterative series of rotations

• Each subsequent rotation uses an increasingly smaller angle, so each

rotation adds a little bit of precision

• More iterations yields more accuracy at the expense of latency

• The rotation angles are fixed at compile time

• can esaily store values in a small memory and keep a running sum of

the cumulative rotated angle

• after an iteration, if the cumulative angle is larger than the target

angle ϕ, we perform a negative rotation. If it’s smaller, than we

perform a positive rotation.

• Once you’ve performed the set number of rotations, you can

determine cos(ϕ) and cos(ϕ) simply by looking at the x and y

values from the final rotated vector.
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Cordic Algo for Sine/Cosine Overview (cont)

How do we represent the rotation? In general for the 2D case, consider

the rotation matrix in the Cartesian plane:

R(θ) =

[
cos θ − sin θ

sin θ cos θ

]
(1)
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Cordic Algo for Sine/Cosine Overview (cont)

Each rotation iteration takes the form

vi = Ri · vi−1 (2)

Thus, in CORDIC, we perform the following operations[
cos θ − sin θ

sin θ cos θ

][
xi−1

yi−1

]
=

[
xi
yi

]
(3)

Writing out the linear equations, the coordinates of the newly rotated

vector are:

xi = xi−1 cos θ − yi−1 sin θ (4)

and

yi = xi−1 sin θ + yi−1 cos θ (5)
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Cordic Algo for Sine/Cosine Overview (cont)

Consider first a 90◦ rotation. In this case the rotation matrix is:

R(90◦) =

[
cos 90◦ − sin 90◦

sin 90◦ cos 90◦

]
=

[
0 −1

1 0

]
(6)

and thus we only have to perform the operations:

xi = xi−1 cos 90
◦ − yi−1 sin 90

◦

= xi−1 · 0− yi−1 · 1
= −yi−1 (7)

and

yi = xi−1 sin 90
◦ + yi−1 cos 90

◦

= xi−1 · 1 + yi−1 · 0
= xi−1 (8)
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Cordic Algo for Sine/Cosine Overview (cont)

Putting this altogether we get[
0 −1

1 0

][
x

y

]
=

[
−y

x

]
(9)

You can see that this is requires a very minimal amount of calculation;

the rotated vector simply negates the y value, and then swaps the x and

y values. A two’s complement negation requires the hardware equivalent

to an adder.
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CORDIC :: Exercise 1

Rotating instead by −90◦?

What if you wanted to rotation by −90◦? What is the rotation matrix

R(−90◦)? What type of calculation is required for this rotation? How

would one design the most efficient circuit that could perform a positive

and negative rotation by −90◦, i.e., the direction of rotation is an input

to the circuit?
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How to Rotate with Smaller Angles?

Let’s try ±45◦. Using the rotation matrix from Equation 1

R(45◦) =

[
cos 45◦ − sin 45◦

sin 45◦ cos 45◦

]
=

[√
2/2 −

√
2/2√

2/2
√
2/2

]
(10)

Calculating out the computation for performing the rotation, we get

xi = xi−1 cos 45
◦ − yi−1 sin 45

◦

= xi−1 ·
√
2/2− yi−1 ·

√
2/2 (11)

and

yi = xi−1 sin 45
◦ + yi−1 cos 45

◦

= xi−1 ·
√
2/2 + yi−1 ·

√
2/2 (12)

which when put back into matrix vector notation is[√
2/2 −

√
2/2√

2/2
√
2/2

][
x

y

]
=

[√
2/2x −

√
2/2y√

2/2x +
√
2/2y

]
(13)
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How to Rotate with Smaller Angles?

This certainly is not as efficient of a computation as compared to

rotating by ±90◦.

What if we “forced” the rotation matrix to be constants that were

easy to multiply?

• If we set the constants in the rotation matrix to be powers of two,

we could very easily perform rotations without multiplication.

• This is the key idea behind the CORDIC – finding rotations that are

very efficient to compute while minimizing any “side effects”.

Important!

There is an engineering decision that is being made here. In order to

get efficient computationwe have to deal with the fact that the rotation

also performs scaling, i.e., it changes the magnitude of the rotated

vector – more on this later.
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How to Rotate with Smaller Angles?

Consider again the rotation matrix

Ri (θ) =

[
cos(θi ) − sin(θi )

sin(θi ) cos(θi )

]
(14)

By using the following trigonometric identities,

cos(θi ) =
1√

1 + tan2(θi )
(15)

sin(θi ) =
tan(θi )√

1 + tan2(θi )
(16)

we can rewrite the rotation matrix as

Ri =
1√

1 + tan2(θi )

[
1 − tan(θi )

tan(θi ) 1

]
(17)
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How to Rotate with Smaller Angles?

If we restrict the values of tan(θi ) to be a multiplication by a factor of

two, the rotation can be performed using shifts (for the multiplication)

and additions. More specifically, we let tan(θi ) = 2−i . The rotation

then becomes

vi = Ki

[
1 −2−i

2−i 1

][
xi−1

yi−1

]
(18)

where

Ki =
1√

1 + 2−2i
(19)
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How to Rotate with Smaller Angles?

A few things to note here. The 2−i is equivalent to a right shift by i bits

(div by a power of 2). This is essentially just a simple rewiring which

does not require any sort of logical resources, i.e., it is essentially “free”

to compute in hardware.
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How to Rotate with Smaller Angles?

But what are the drawbacks?

• We are limited to rotate by angles θ such that tan(θi ) = 2−i .

• We are only showing rotation in one direction; the CORDIC requires

the ability to rotation by ±θ. This is simple to correct by adding in σ

which can have a value of 1 or −1, which corresponds to performing

a positive or negative rotation. We can have a different σi at every

iteration/rotation. Thus the rotation operation generalizes to

vi = Ki

[
1 −σi2

−i

σi2
−i 1

][
xi−1

yi−1

]
(20)
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How to Rotate with Smaller Angles?

But what are the drawbacks? (cont)

• Finally, the rotation requires a multiplication by Ki . Ki is typically

ignored in the iterative process and then adjusted for after the series

of rotations is completed. The cumulative scaling factor is

K (n) =
n−1∏
i=0

Ki =
n−1∏
i=0

1√
1 + 2−2i

(21)

and

K = lim
n→∞

K (n) ≈ 0.6072529350088812561694 (22)

The scaling factors for different iterations can be calculated in

advance and stored in a table. If we always perform a fixed number

of rotations, this is simply one constant. Sometimes it is ok to

ignore this scaling, which results in a processing gain

A =
1

K
= lim

n→∞

n−1∏
i=0

√
1 + 2−2i ≈ 1.64676025812107 (23)
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Example CORDIC Gains

Table 1: The rotating angle, scaling factor, and CORDIC gain for the first

seven iterations of a CORDIC. Note that the angle decreases by approximately

half each time. The scaling factor indicates how much the length the the

vector increases during that rotation. The CORDIC gain is the overall increase

in the length of the vector which is the product of all of the scaling factors for

the current and previous rotations.

i 2−i Rotating Angle Scaling Factor CORDIC Gain

0 1.0 45.000◦ 1.41421 1.41421

1 0.5 26.565◦ 1.11803 1.58114

2 0.25 14.036◦ 1.03078 1.62980

3 0.125 7.125◦ 1.00778 1.64248

4 0.0625 3.576◦ 1.00195 1.64569

5 0.03125 1.790◦ 1.00049 1.64649

6 0.015625 0.895◦ 1.00012 1.64669
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CORDIC :: Exercise 2

On precision

Describe the effect of the ith iteration on the precision of the results?

That is, what bits does it change? How does more iterations change

the precision of the final result, i.e., how do the values of sinϕ and

cosϕ change as the CORDIC performs more iterations?
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Calculating Sine and Cosine



A Specific Example

Start at 0◦ and approach the target angle ϕ = 60◦. Thus we are

interested in computing cos(60◦) and sin(60◦).

We’ll use the values from Table 1 as the pre-defined angles to rotate by.

i 2−i Rotating Angle Scaling Factor CORDIC Gain

0 1.0 45.000◦ 1.41421 1.41421

1 0.5 26.565◦ 1.11803 1.58114

2 0.25 14.036◦ 1.03078 1.62980

3 0.125 7.125◦ 1.00778 1.64248

4 0.0625 3.576◦ 1.00195 1.64569

5 0.03125 1.790◦ 1.00049 1.64649

6 0.015625 0.895◦ 1.00012 1.64669
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A Specific Example (cont.)

1

2

3 

4 

5 

1) 0°+45°=45°

2) 45°+26.565°=71.565°
3) 71.565°-14.036°=57.529°

4) 57.529°+7.125°=64.654°
5) 64.64°-3.576°=61.078°

Figure 2: Calculating cos 60◦ and sin 60◦ using the CORDIC algorithm. Five

rotations are performed using incrementally larger i values (0,1,2,3,4). The

result is a vector with an angle of 61.078◦. The corresponding x and y values

of that vector give the approximate desired cosine and sine values.
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CORDIC :: Exercise 3

Additonal rotations

How would the answer change if we performed one more rotation? How

about two (three, four, etc.) more rotations? What is the accuracy

(e.g., compared to a MATLAB implementation) as we perform more

rotations?
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CORDIC :: Exercise 4

Additonal rotations

Is it possible to get worse accuracy by performing more rotations?

Provide an example when this would occur.
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Sequential Version of CORDIC

1 #i n c l u d e ” c o r d i c . h”

2 // The c o r d i c p h a s e a r r a y ho l d s the ang l e f o r the c u r r e n t r o t a t i o n

3 // c o r d i c p h a s e [ 0 ] =˜ 0 .785 , c o r d i c p h a s e [ 1 ] =˜ 0 .463 , e t c .

4 vo i d c o r d i c (THETA TYPE theta , COS SIN TYPE &s , COS SIN TYPE &c ) {
5 // Set the i n i t i a l v e c t o r t ha t we w i l l r o t a t e

6 COS SIN TYPE c u r r e n t c o s = 0 . 60735 ; // s t a r t a t x = 1 , y = 0 , ph i = 0

7 COS SIN TYPE c u r r e n t s i n = 0 . 0 ;

8

9 COS SIN TYPE f a c t o r = 1 . 0 ;

10 // This l oop i t e r a t i v e l y r o t a t e s the i n i t i a l v e c t o r to f i n d the

11 // s i n e and c o s i n e v a l u e s c o r r e s p ond i n g to the i npu t t h e t a ang l e

12 f o r ( i n t j = 0 ; j < NUM ITERATIONS ; j++) {
13 // Determine i f we a r e r o t a t i n g by a p o s i t i v e or n e g a t i v e ang l e

14 i n t s igma = ( th e t a < 0) ? −1 : 1 ;

15

16 // Mu l t i p l y p r e v i o u s i t e r a t i o n by 2ˆ(− j )

17 COS SIN TYPE c o s s h i f t = c u r r e n t c o s ∗ s igma ∗ f a c t o r ;

18 COS SIN TYPE s i n s h i f t = c u r r e n t s i n ∗ s igma ∗ f a c t o r ;

19

20 // Perform the r o t a t i o n

21 c u r r e n t c o s = c u r r e n t c o s − s i n s h i f t ;

22 c u r r e n t s i n = c u r r e n t s i n + c o s s h i f t ;

23

24 // Determine the new the t a

25 th e t a = the t a − s igma ∗ c o r d i c p h a s e [ j ] ;

26

27 f a c t o r = f a c t o r / 2 ;

28 }
29 // Set the f i n a l s i n e and c o s i n e v a l u e s

30 s = c u r r e n t s i n ;

31 c = c u r r e n t c o s ;

32 }
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