
CSE565M: Acceleration of Algorithms

in Reconfigurable Logic

Learn by Doing: Finite Impulse Response (FIR) Filters (Pt. 2)

Anthony Cabrera

FL24::L04

Washington University in St. Louis

Table of contents

1. Calculating Performance

2. Operation Chaining

3. Code Hoisting

4. Loop Fission

5. Loop Unrolling

6. Loop Pipelining

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters (Pt. 2) FL24::L04 1 / 18

Calculating Performance

Apples to Apples Comparisons

Need to make sure we compare two systems using the same metric

• How fast it runs

• Latency? (how long one iteration takes)

• Throughput? (rate at which you can process input)

• operates at X bits
second

• performs Y ops
second

• Other perf measures

• filter operations
second

• how many multiply-accumulates per second: MACs
s

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters (Pt. 2) FL24::L04 2 / 18

Operation Chaining

Operation Chaining

Figure 1: Effects of the hardware compiler applying operation chaining at

different clock frequencies.

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters (Pt. 2) FL24::L04 3 / 18

Code Hoisting

Base FIR Architecture

1 #d e f i n e N 11

2 #i n c l u d e ” a p i n t . h”

3

4 t y p ed e f i n t c o e f t ;

5 t y p ed e f i n t d a t a t ;

6 t y p ed e f i n t a c c t ;

7

8 vo i d f i r (d a t a t ∗y , d a t a t x) {
9 c o e f t c [N] = {53 , 0 , −91, 0 , 313 , 500 , 313 , 0 , −91, 0 , 53} ;

10 s t a t i c d a t a t s h i f t r e g [N] ;

11 a c c t acc ;

12 i n t i ;

13

14 acc = 0 ;

15 Sh i f t Accum Loop :

16 f o r (i = N − 1 ; i >= 0 ; i−−) {
17 i f (i == 0) {
18 acc += x ∗ c [0] ;

19 s h i f t r e g [0] = x ;

20 } e l s e {
21 s h i f t r e g [i] = s h i f t r e g [i − 1] ;

22 acc += s h i f t r e g [i] ∗ c [i] ;

23 }
24 }
25 ∗y = acc ;

26 }

Figure 2: A functionally correct, but highly unoptimized, implementation of an

11 tap FIR filter.

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters (Pt. 2) FL24::L04 4 / 18

Code Hoisting in the FIR Example

The if/else logic is inefficient. Why?

• For every control structure in the code, the tool creates logical

hardware that checks if the condition is met, which is executed in

every iteration of the loop.

• Furthermore, this conditional structure limits the execution of the

statements in either the if or else branches; these statements can

only be executed after the if condition statement is resolved, i.e.,

pipelining becomes inefficient!

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters (Pt. 2) FL24::L04 5 / 18

Code Hoisting in the FIR Example

The if/else logic is inefficient. Why?

• For every control structure in the code, the tool creates logical

hardware that checks if the condition is met, which is executed in

every iteration of the loop.

• Furthermore, this conditional structure limits the execution of the

statements in either the if or else branches; these statements can

only be executed after the if condition statement is resolved, i.e.,

pipelining becomes inefficient!

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters (Pt. 2) FL24::L04 5 / 18

How to Fix with Code Hoisting?

• The if statement checks when i == 0, which happens only on the last

iteration.

• Therefore, the statements within the if branch can be “hoisted” out

of the loop.

• That is we can execute these statements after the loop ends, and

then remove the if/else control flow in the loop.

• Finally, we must change the loop bounds from executing the “0th”

iteration. This transform is shown in Figure 3. This shows just the

changes that are required to the for loop.

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters (Pt. 2) FL24::L04 6 / 18

How to Fix with Code Hoisting?

• The if statement checks when i == 0, which happens only on the last

iteration.

• Therefore, the statements within the if branch can be “hoisted” out

of the loop.

• That is we can execute these statements after the loop ends, and

then remove the if/else control flow in the loop.

• Finally, we must change the loop bounds from executing the “0th”

iteration. This transform is shown in Figure 3. This shows just the

changes that are required to the for loop.

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters (Pt. 2) FL24::L04 6 / 18

How to Fix with Code Hoisting?

• The if statement checks when i == 0, which happens only on the last

iteration.

• Therefore, the statements within the if branch can be “hoisted” out

of the loop.

• That is we can execute these statements after the loop ends, and

then remove the if/else control flow in the loop.

• Finally, we must change the loop bounds from executing the “0th”

iteration. This transform is shown in Figure 3. This shows just the

changes that are required to the for loop.

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters (Pt. 2) FL24::L04 6 / 18

How to Fix with Code Hoisting?

• The if statement checks when i == 0, which happens only on the last

iteration.

• Therefore, the statements within the if branch can be “hoisted” out

of the loop.

• That is we can execute these statements after the loop ends, and

then remove the if/else control flow in the loop.

• Finally, we must change the loop bounds from executing the “0th”

iteration. This transform is shown in Figure 3. This shows just the

changes that are required to the for loop.

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters (Pt. 2) FL24::L04 6 / 18

Result after Code Hoisting

1 Shift_Accum_Loop:

2 for (i = N - 1; i > 0; i--) {

3 shift_reg[i] = shift_reg[i - 1];

4 acc += shift_reg[i] * c[i];

5 }

6

7 acc += x * c[0];

8 shift_reg [0] = x;

Figure 3: Removing the conditional statement from the for loop creates a

more efficient hardware implementation.

The end results is a much more compact implementation that is ripe for

further loop optimizations, e.g., unrolling and pipelining.

NOTE

Even targeting a traditional CPU, this optimization removes conditional

logic that just makes the code a little more reasonable and will generate

less instructions.

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters (Pt. 2) FL24::L04 7 / 18

Loop Fission

Loop Fission

• Loop fission takes the two tasks in the single loop and decomposes

them into their own loop.

• this allows us to perform optimizations separately on each loop

• this can be advantageous especially in cases when the resulting

optimizations on the split loops are different

• performing loop fission isn’t necessarily always better though

1 TDL:

2 for (i = N - 1; i > 0; i--) {

3 shift_reg[i] = shift_reg[i - 1];

4 }

5 shift_reg [0] = x;

6

7 acc = 0;

8 MAC:

9 for (i = N - 1; i >= 0; i--) {

10 acc += shift_reg[i] * c[i];

11 }

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters (Pt. 2) FL24::L04 8 / 18

Loop Fission

• Loop fission takes the two tasks in the single loop and decomposes

them into their own loop.

• this allows us to perform optimizations separately on each loop

• this can be advantageous especially in cases when the resulting

optimizations on the split loops are different

• performing loop fission isn’t necessarily always better though

1 TDL:

2 for (i = N - 1; i > 0; i--) {

3 shift_reg[i] = shift_reg[i - 1];

4 }

5 shift_reg [0] = x;

6

7 acc = 0;

8 MAC:

9 for (i = N - 1; i >= 0; i--) {

10 acc += shift_reg[i] * c[i];

11 }

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters (Pt. 2) FL24::L04 8 / 18

Loop Fission

• Loop fission takes the two tasks in the single loop and decomposes

them into their own loop.

• this allows us to perform optimizations separately on each loop

• this can be advantageous especially in cases when the resulting

optimizations on the split loops are different

• performing loop fission isn’t necessarily always better though

1 TDL:

2 for (i = N - 1; i > 0; i--) {

3 shift_reg[i] = shift_reg[i - 1];

4 }

5 shift_reg [0] = x;

6

7 acc = 0;

8 MAC:

9 for (i = N - 1; i >= 0; i--) {

10 acc += shift_reg[i] * c[i];

11 }

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters (Pt. 2) FL24::L04 8 / 18

Loop Unrolling

Loop Unrolling Part 1

• replicates the body of the loop and reduces the number of iterations

by the same factor

• in the best case, iterations are independent and can substantially

increase the available parallelism

• note the loose ends because the divisor does not divide cleanly

• also note the decrement reflecting the factor of 2

• also also note that this is how we get those different implementations

of the FIR filter from Ch. 1 w.r.t. how many tap coefficients we have

access to during one iteration of the shift register loop

1 TDL:

2 for (i = N - 1; i > 1; i = i - 2) {

3 shift_reg[i] = shift_reg[i - 1];

4 shift_reg[i - 1] = shift_reg[i - 2];

5 }

6 if (i == 1) {

7 shift_reg [1] = shift_reg [0];

8 }

9 shift_reg [0] = x;

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters (Pt. 2) FL24::L04 9 / 18

Auto Unrolling

1 static data_t shift_reg[N];

2 #pragma HLS ARRAY_PARTITION variable = shift_reg complete dim = 0

3

4 TDL : for (i = N - 1; i > 1; --i) {

5 #pragma HLS PIPELINE II = 1

6 shift_reg[i] = shift_reg[i - 1];

7 }

8 if (i == 1) {

9 shift_reg [1] = shift_reg [0];

10 }

11 shift_reg [0] = x;

Figure 4: Example of using ‘pragma‘s to automatically unroll loop.

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters (Pt. 2) FL24::L04 10 / 18

Unrolling the MAC Loop

1 acc = 0;

2 MAC:

3 for (i = N - 1; i >= 3; i -= 4) {

4 acc += shift_reg[i] * c[i] + shift_reg[i - 1] * c[i - 1] +

5 shift_reg[i - 2] * c[i - 2] + shift_reg[i - 3] * c[i - 3];

6 }

7

8 for (; i >= 0; i--) {

9 acc += shift_reg[i] * c[i];

10 }

Figure 5: Manually unrolling the MAC loop.

• Don’t forget the loose ends!

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters (Pt. 2) FL24::L04 11 / 18

Loop Unrolling Part 2

• note that just because you unroll by a big factor doesn’t necessarily

mean it’s possible

• e.g., mapping the shift register to a BRAM would be limited by the

number of read and write ports

• also unroll the computaiton loop (fig 2.6)

• don’t forget the loose ends after you rewrite!

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters (Pt. 2) FL24::L04 12 / 18

Loop Pipelining

Loop Pipelining Pt 1

By default, Vitis HLS will synthezie ‘for‘ loops in a sequential manner

• e.g., the ‘for‘ loop in Figure 2.1 will perform each iteration of the

loop after the other.

• that is, all of the statements in the second iteration happen only

wnen all of the statements from the first iteration are complete and

so on

We can do better! But we as the programmer have to help the Vitis HLS

tool (using loop pipelining)

• consider the previous MAC ‘for‘ loop. the operations are

• read c[]

• read shift_reg[]

• *: multiple the values from c[] and shift_reg[]

• +: accumulate this mulitplied result into the acc variable

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters (Pt. 2) FL24::L04 13 / 18

Loop Pipelining Pt 2

• a corresponding schedule for the above is shown in Fig 2.7

• each read takes 2 cycles

• cycle 1: provde address to memory

• cycle 2: read memory using the address

• each read can be done in parallel

• * can occur in cycle 2

• assume it takes 3 cycles, i.e., finished after cycle 4

• the ‘+‘ operation is operation chained to start and complete during

cycle 4

• thus, the entire body of the MAC ‘for‘ loop takes 4 cycles to

complete

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters (Pt. 2) FL24::L04 14 / 18

Pipeline Schedule

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters (Pt. 2) FL24::L04 15 / 18

Loop Pipelining Pt 3

• performance metrics associated with ‘for‘ loop:

• iteration latency: number of cycles it takes to perform one iteration

of the loop body

• iteration latency of the above example is 4 cycles

• ‘for‘ loop latency:

• number of cycles required to complete the entire execution of the

loop

• includes time to calcualte the initialization statement (e.g., ‘i = 0‘),

and the increment statment

• assuming that these header statements can be done in parallel with

the loop body execution, the LS tool reports the latency of this

MAC ‘for‘ loop as 44 cycles

• number of iterations multipled by the iteration latency

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters (Pt. 2) FL24::L04 16 / 18

Loop Pipelining Pt 4

• Loop pipelining is an optimization that overlaps multiple iterations

of a ‘for‘ loop

• Overlap iteration execution

• total loop latency of 14 vs 44!

• Loop initiation interval (II) is another important metric

• defined as the number of iterations until the next iteration of the

loop can start

• in the example case, II=1 so a new iteration can start every cycle

• II can be explicitly set using a directive

• ‘pragma HLS pipeline II=2‘ informs HLS tool to attempt ‘II=2‘.

• any ‘for‘ loop can be pipelined, so we consider the TDL ‘for‘ loop

• ‘pragma HLS pipeline II=1‘

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters (Pt. 2) FL24::L04 17 / 18

References i

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters (Pt. 2) FL24::L04 18 / 18

	Calculating Performance
	Operation Chaining
	Code Hoisting
	Loop Fission
	Loop Unrolling
	Loop Pipelining

