
CSE565M: Acceleration of Algorithms

in Reconfigurable Logic

Learn by Doing: Finite Impulse Response (FIR) Filters

Anthony Cabrera

FL24::L03

Washington University in St. Louis

Table of contents

1. Overview

2. Background

3. Base FIR Architecture pt. 1

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters FL24::L03 1 / 18

Overview

Learning Goals

The goal of this lecture is to provide a basic understanding of the process

of taking an algorithm and creating a good hardware design using

high-level synthesis. The first step in this process is always to have a

deep understanding of the algorithm itself. This allows us to make design

optimizations like code restructuring much more easily.

With this in mind, we’ll

• cover a brief overview of FIR filter theory and computation.

• combine this knoweldge with the intuition developed from last class

to introduce HLS optimizations to create an FIR filter in hardware.

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters FL24::L03 2 / 18

What are FIR filters? p. 1

• Finite Impulse Response (FIR) filters are commonplace in digital

signal processing (DSP) applications.

• They are well suited for hardware implementation since they can be

implemented as a highly optimized architecture.

• A key property is that they are a linear transform on contiguous
elements of a signal.

• This maps well to data structures (e.g., FIFOs or tap delay lines)

that can be implemented efficiently in hardware.

• In general, streaming applications tend to map well to FPGAs, e.g.,

most of the examples in the book have some sort of streaming

behavior [1].

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters FL24::L03 3 / 18

What are FIR filters? p. 2

Two fundamental uses for a filter are signal restoration and signal
separation.

• Signal separation is perhaps the more common use case: here one
tries to isolate the input signal into different parts, e.g., low-pass,
high-pass, and band-pass filters.

• Signal restoration relates to removing noise and other common
distortion artifacts that may have been introduced into the signal,
e.g., signal smoothing or removing the DC component.

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters FL24::L03 4 / 18

What are FIR filters? p. 3

Digital FIR filters often deal with a discrete signal generated by sampling

a continuous signal. The most familiar sampling is performed in time,

i.e., the values from a signal are taken at discrete instances. These are

most often sampled at regular intervals.

• e.g., we might sample the voltage across an antenna at a regular

interval with an analog-to-digital converter.

Alternatively, samples may be taken in space.

• For instance, we might sample the value of different locations in an

image sensor consisting of an array of photo-diodes to create a

digital image.

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters FL24::L03 5 / 18

What are FIR filters? p. 4

The format of the data in a sample changes depending upon the

application.

• Digital communications often uses complex numbers (in-phase and

quadrature or I/Q values) to represent a sample.

• In image processing we often think of a pixel as a sample.

• A pixel can have multiple fields, e.g., red, green, and blue (RGB)

color channels.

• We may wish to filter each of these channels in a different way again

depending upon the application.

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters FL24::L03 6 / 18

Background

Impulse Response, Taps, Convolutions

• The output signal of a filter given an impulse input signal is its

impulse response. The impulse response of a linear, time invariant

filter contains the complete information about the filter.

• Given the impulse response of an FIR filter, we can compute the

output signal for any input signal through the process of

convolution. This process combines samples of the impulse

response (also called coefficients or taps) with samples of the input

signal to compute samples of the output signal.

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters FL24::L03 7 / 18

Convolution of an N-tap FIR filter

The convolution of an N-tap FIR filter with coefficients h[] with an input

signal x [] is described by the general difference equation:

y [i] =
N−1∑
j=0

h[j] · x [i − j] (1)

Note that to compute a single value of the output of an N-tap filter

requires N multiplies and N-1 additions.

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters FL24::L03 8 / 18

Moving Average Filters

Moving average filters are a simple form of lowpass FIR filter where all

the coefficients are identical and sum to one. For instance in the case of

the three point moving filter, the coefficients are h = [13 ,
1
3 ,

1
3]. It is also

called a box car filter due to the shape of its convolution kernel.

Alternatively, you can think of a moving average filter

y [i] =
1

N

N−1∑
j=0

x [i − j] (2)

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters FL24::L03 9 / 18

Moving Average Filters (cont.)

Each sample in the output signal can be computed by the above equation

using N − 1 additions and one final multiplication by 1/N. Even the final

multiplication can often be regrouped and merged with other operations.

As a result, moving average filters are simpler to compute than a general

FIR filter. Specifically, when N = 3 we perform this operation to

calculate y [12]:

y [12] =
1

3
· (x [12] + x [11] + x [10]) (3)

This filter is causal, meaning that the output is a function of no future

values of the input. It is possible and common to change this, for

example, so that the average is centered on the current sample, i.e.,

y [12] = 1
3 · (x [11] + x [12] + x [13]).

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters FL24::L03 10 / 18

On Filter Coefficients

Filter coefficients can be crafted to create many different kinds of filters:

low pass, high pass, band pass, etc. In general, a larger value of number

of taps provides more degrees of freedom when designing a filter,

generally resulting in filters with better characteristics.

When implementing a filter, the actual values of these coefficients are

largely irrelevant and we can ignore how the coefficients themselves were

arrived at.

However, the structure of the filter, or the particular coefficients can have

a large impact on the number of operations that need to be performed

• e.g., symmetric filters have multiple taps with exactly the same

value which can be grouped to reduce the number of multiplications.

But we will ignore that for the time being, and focus on generating

architectures that have constant coefficients, but do not take advantage

of the values of the constants.

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters FL24::L03 11 / 18

Base FIR Architecture pt. 1

Base FIR Architecture

1 #d e f i n e N 11

2 #i n c l u d e ” a p i n t . h”

3

4 t y p ed e f i n t c o e f t ;

5 t y p ed e f i n t d a t a t ;

6 t y p ed e f i n t a c c t ;

7

8 vo i d f i r (d a t a t ∗y , d a t a t x) {
9 c o e f t c [N] = {53 , 0 , −91, 0 , 313 , 500 , 313 , 0 , −91, 0 , 53} ;

10 s t a t i c d a t a t s h i f t r e g [N] ;

11 a c c t acc ;

12 i n t i ;

13

14 acc = 0 ;

15 Sh i f t Accum Loop :

16 f o r (i = N − 1 ; i >= 0 ; i−−) {
17 i f (i == 0) {
18 acc += x ∗ c [0] ;

19 s h i f t r e g [0] = x ;

20 } e l s e {
21 s h i f t r e g [i] = s h i f t r e g [i − 1] ;

22 acc += s h i f t r e g [i] ∗ c [i] ;

23 }
24 }
25 ∗y = acc ;

26 }

Figure 1: A functionally correct, but highly unoptimized, implementation of an

11 tap FIR filter.

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters FL24::L03 12 / 18

Base FIR Architecture pt. 2

The coefficients for the filter are stored in the c[] array declared inside of

the function. These are statically defined constants. Note that the

coefficients are symmetric. i.e., they are mirrored around the center value

c[5] = 500. Many FIR filter have this type of symmetry. We could take

advantage of it in order to reduce the amount of storage that is required

for the c[] array.

The code uses typedef for the different variables. While this is not

necessary, it is convenient for changing the types of data. As we discuss

later, bit width optimization – specifically setting the number of integer

and fraction bits for each variable – can provide significant benefits in

terms of performance and area.

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters FL24::L03 13 / 18

Base FIR Architecture pt. 3

The code is written as a streaming function. It receives one sample at a

time, and therefore it must store the previous samples. Since this is an 11

tap filter, we must keep the previous 10 samples. This is the purpose of

the shift_reg[] array. This array is declared static since the data must be

persistent across multiple calls to the function.

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters FL24::L03 14 / 18

Base FIR Architecture pt. 4

The for loop is doing two fundamental tasks in each iteration. First, it

performs the MAC operation on the input samples (the current input

sample x and the previous input samples stored in shift_reg[]). Each

iteration of the loop performs a multiplication of one of the constants

with one of the sample, and stores the running sum in the variable acc.

The loop is also shifting values through shift_array, which works as a

FIFO. It stores the input sample x into shift_array[0], and moves the

previous elements “up” through the shift_array:

shift_reg[10] = shift_reg[9]

shift_reg[9] = shift_reg[8]

shift_reg[8] = shift_reg[7]

· · ·
shift_reg[2] = shift_reg[1]

shift_reg[1] = shift_reg[0]

shift_reg[0] = x

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters FL24::L03 15 / 18

Base FIR Architecture :: Exercise 1

Implementing logic gates from LUTs

Rewrite the code so that it takes advantage of the symmetry found in

the coefficients. That is, change c[] so that it has six elements (c[0]

through c[5]). What changes are necessary in the rest of the code?

How does this effect the number of resources? How does it change the

performance?

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters FL24::L03 16 / 18

Base FIR Architecture pt. 5

After the for loop completes, the acc variable has the complete result of

the convolution of the input samples with the FIR coefficient array. The

final result is written into the function argument y which acts as the

output port from this fir function. This completes the streaming process

for computing one output value of an FIR.

This function does not provide an efficient implementation of a

FIR filter. It is largely sequential, and employs a significant amount of

unnecessary control logic. The following sections describe a number of

different optimizations that improve its performance.

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters FL24::L03 17 / 18

References i

R. Kastner, J. Matai, and S. Neuendorffer.

Parallel Programming for FPGAs.

ArXiv e-prints, May 2018.

AM Cabrera

CSE565M: Acceleration of Algorithms in Reconfigurable Logic ::

Learn by Doing: Finite Impulse Response (FIR) Filters FL24::L03 18 / 18

	Overview
	Background
	Base FIR Architecture pt. 1

