
CSE565M: Acceleration of Algorithms

in Reconfigurable Logic

Introduction

Anthony Cabrera

FL24::L02

Washington University in St. Louis

Table of contents

1. Introduction to High Level Synthesis (HLS)

2. FPGA Architecture

3. FPGA Design Processs

4. Design Optimization

Performance Characterization

Area/Throughput Tradeoffs

Restrictions on Processing Rate (Next Time)

Coding Style (Next Time)

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Introduction FL24::L02 1 / 21

Introduction to High Level

Synthesis (HLS)

What does HLS actually do?

From KMN[1]

• HLS analyzes and exploits the concurrency in an algorithm.

• HLS inserts registers as necessary to limit critical paths
and achieve a desired clock frequency.

• HLS generates control logic that directs the data path.

• HLS implements interfaces to connect to the rest of the
system.

• HLS maps data onto storage elements to balance resource
usage and bandwidth.

• HLS maps computation onto logic elements performing
user specified and automatic optimizations to achieve the
most efficient implementation.

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Introduction FL24::L02 2 / 21

What are the inputs to HLS?

From KMN

• A function specified in C, C++, or SystemC

• A design testbench that calls the function and verifies its correctness

by checking the results.

• A target FPGA device

• The desired clock period

• Directives guiding the implementation process

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Introduction FL24::L02 3 / 21

Using a C/C++ to Design Hardware(?)

• tl;dr: It’s a tradeoff. HLS tools simultaneously limit and enhance

expressiveness

• PRO: You get to author HW using a language at a higher level of

abstraction

• PRO: more folks are familiar with these “higher-level” languages

• CON: C/C++ was designed as a sequential language; how do you

reason about HW concurrency? (it’s not always intuitive)

• CON: directives guide HW design, but more difficult to achieve

fine-grained control of a design

• PRO: HLS does allow for a variety of different interfaces – DMA,

streaming, on-chip memories – and optimizations – pipelining,

memory partitioning, bidwidth optimization

• CON: Restrictions on what parts of C/C++ make for valid HLS

designs, e.g., system calls and uncommon standard library calls are

not supported

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Introduction FL24::L02 4 / 21

FPGA Architecture

FPGA Architecture :: General

“I’m not very familiar with FPGA architecture. How much do I really

need to know?”

• That’s okay! You’re not expected to understand the low-level details

of FPGAs, nor do you need to. We just need to know enough to

make sense of the FPGA elements that are targeted by high-level

directives.

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Introduction FL24::L02 5 / 21

General FPGA Architecture

• massive arrays of programmable logic and interconnect

• on-chip memories

• custom data paths

• high speed I/O

• microprocessor cores all co-located on the same chip

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Introduction FL24::L02 6 / 21

LUTs

Con�guration Bit0

Con�guration Bit1

Con�guration Bit2

Con�guration Bit3
2

in

out

in[1] out
0
0
0
1

0
0
1
1

0
1
0
1

in[0]

out = in[1] & in[0]

a) b)

LUT Memory

in
3

out

c)

FF
FF

Select

SliceLookup Table (LUT)

Figure 1: a) shows a 2 input lut, i.e., a 2-LUT. Each of the four configuration bits can be

programmed to change the function of the 2-LUT making it a fully programmable 2 input logic

gate.

b) provides a sample programming to implement an AND gate. The values in the “out” column

from top to bottom correspond directly to configuration bits 0 through 3.

c) shows a simple slice that contains a slightly more complex 3-LUT with the possibility of storing

the output into a ff. Note that there are nine configuration bits: eight to program the 3-LUT and

one to decide whether the output should be direct from the 3-LUT or the one stored in the ff.

More generally, a slice is defined as a small number of lut and ff combined with routing logic

(multiplexers) to move inputs, outputs, and internal values between the lut and ff.

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Introduction FL24::L02 7 / 21

FPGA Architecture :: Exercise 1

Implementing logic gates from LUTs

How would you program the 2-LUT from Figure ?? to implement an

XOR gate? An OR gate? How many programming bits does an n input

(n-LUT) require?

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Introduction FL24::L02 8 / 21

FPGA Architecture :: Exercise 2

Implementing logic gates from LUTs

How many unique functions can a 2-LUT be programmed to

implement? How many unique functions can a n input (n-LUT)

implement?

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Introduction FL24::L02 9 / 21

Networking Slices

...

Slice

Routing Channel

...

Ro
ut

in
g

Ch
an

ne
l

...

Switchbox

Routing Track
Switch

Figure 2: A slice contains a small number of lut and ff. We show a very simple slice with one lut

and one ff though generally these have two or more of each. Slices are connected to one another

using a routingchannel and switchbox. These two provide a programmable interconnect that

provide the data movement between the programmable logic elements (slice). The switchbox has

many switches (typically implemented as pass transistors) that allow for arbitrary wiring

configurations between the different routing tracks in the routing tracks adjacent to the switchbox.

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Introduction FL24::L02 10 / 21

Island-Style FPGA Architecture

I/O Block

Routing Channel

Slice

Switchbox

Figure 3: The 2D structure of an fpga showing an island style architecture. The logic and memory

resources in the slice are interconnected using routing channels and switchboxes. The input/output

(I/O) blocks provide an external interface, e.g., to a memory, microprocessor, sensor, and/or

actuator. On some FPGAs, the I/O directly connects to the chip pins. Other FPGAs use the I/O to

connect the programmable logic fabric to on-chip resources (e.g., a microprocessor bus or cache).

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Introduction FL24::L02 11 / 21

Modern FPGA Architecture

BRAM DSP
Block

High
Speed

Interfaces

Microprocessor

Figure 4: Modern fpga are becoming more heterogenous with a mix of programmable logic

elements and “hardened” architectural elements like register files, custom datapaths, and high

speed interconnect. The fpga is often paired with one or more microprocessors, e.g., ARM or x86

cores, that coordinates the control of the system.

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Introduction FL24::L02 12 / 21

Comparing on- and off-chip memory options

External

Memory BRAM FFs

count 1-4 thousands millions

size GBytes KBytes Bits

total size GBytes MBytes 100s of KBytes

width 8-64 1-16 1

total bandwidth GBytes/sec TBytes/sec 100s of TBytes/sec

Figure 5: A comparison of three different on- and off-chip memory storage

options. External memory provides the most density but has limited total

bandwidth. Moving on-chip there are two options: ff and bram. ff have the

best total bandwidth but only a limited amount of total data storage capability.

bram provide an intermediate value between external memory and ff.

Analagous to the memory hierarchy in typical CPUs.

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Introduction FL24::L02 13 / 21

AMD Versal Adaptive SoC

Figure 6: AMD Versal Adaptive SoC. Combines Programmable logic with AI Engine and DSP

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Introduction FL24::L02 14 / 21

FPGA Design Processs

A Hypothetical Embedded FPGA Design

Figure 7: A block diagram showing a hypothetical embedded FPGA design, consisting of I/O

interface cores (shown in blue), standard cores (shown in green), and application specific

accelerator cores (shown in purple). Note that accelerator cores might have streaming interfaces

(Accelerator 2), memory-mapped interfaces (Accelerator 3), or both (Accelerator 1).

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Introduction FL24::L02 15 / 21

Design Optimization

The Clock and Performance Characterization

It is possible to optimize the design by changing the clock frequency. The

tool takes as input a target clock frequency, and changing this frequency

target will likely result in the tool generating different implementations.

We will revisit this concept throughout the semester.. For example, there

are constraints the are imposed on the HLS tool depending on the clock

period. Further, increasing the clock period can increase the throughput

by employing operation chaining (e.g., pipelining).

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Introduction FL24::L02 16 / 21

Tasks as atomic units of behavior

Figure 8: A block diagram showing a hypothetical embedded FPGA design, consisting of I/O

interface cores (shown in blue), standard cores (shown in green), and application specific

accelerator cores (shown in purple). Note that accelerator cores might have streaming interfaces

(Accelerator 2), memory-mapped interfaces (Accelerator 3), or both (Accelerator 1).

Helpful to think about this like you would a pipeline diagram in

Computer Architecture.

Figure 9: A block diagram showing a hypothetical embedded FPGA design, consisting of I/O

interface cores (shown in blue), standard cores (shown in green), and application specific

accelerator cores (shown in purple). Note that accelerator cores might have streaming interfaces

(Accelerator 2), memory-mapped interfaces (Accelerator 3), or both (Accelerator 1).

The figure on the left takes advantage of pipelining.

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Introduction FL24::L02 17 / 21

Area/Throughput Tradeoffs

1 #define NUM_TAPS 4

2

3 void fir(int input , int *output , int taps[NUM_TAPS])

4 {

5 static int delay_line[NUM_TAPS] = {};

6

7 int result = 0;

8 for (int i = NUM_TAPS - 1; i > 0; i--) {

9 delay_line[i] = delay_line[i - 1];

10 }

11 delay_line [0] = input;

12

13 for (int i = 0; i < NUM_TAPS; i++) {

14 result += delay_line[i] * taps[i];

15 }

16

17 *output = result;

18 }

Figure 10: Code for a four tap FIR filter. Given this HLS description, what

circuit does this actually create?

The Vitis tools will generate an optimized but largely sequential architecture in the

form of a finite state machine whose data path minimizes functional units (i.e., area)

and encourages resource sharing as opposed to massive parallelism.

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Introduction FL24::L02 18 / 21

Area/Throughput Tradeoffs

Figure 11: Example of a resulting sequentially generated architecture.AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Introduction FL24::L02 19 / 21

Area/Throughput Tradeoffs

Figure 12: Trading area for throughput

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Introduction FL24::L02 20 / 21

References i

R. Kastner, J. Matai, and S. Neuendorffer.

Parallel Programming for FPGAs.

ArXiv e-prints, May 2018.

AM Cabrera CSE565M: Acceleration of Algorithms in Reconfigurable Logic :: Introduction FL24::L02 21 / 21

	Introduction to High Level Synthesis (HLS)
	FPGA Architecture
	FPGA Design Processs
	Design Optimization
	Performance Characterization
	Area/Throughput Tradeoffs
	Restrictions on Processing Rate (Next Time)
	Coding Style (Next Time)

